Bogomolov-Gieseker-type inequality and counting invariants

被引:17
作者
Toda, Yukinobu [1 ]
机构
[1] Univ Tokyo, Todai Inst Adv Studies TODIAS, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan
关键词
ABELIAN CATEGORIES; STABLE OBJECTS; MODULI; SHEAVES; CONFIGURATIONS; COMPLEXES; 3-FOLDS;
D O I
10.1112/jtopol/jts037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a conjectural relationship among Donaldson-Thomas-type invariants on Calabi-Yau 3-folds counting torsion sheaves supported on ample divisors, ideal sheaves of curves and Pandharipande-Thomas's stable pairs. The conjecture is a mathematical formulation of Denef-Moore's formula derived in the study of Ooguri-Strominger-Vafa's conjecture relating black hole entropy and topological strings. The main result of this paper is to prove our conjecture assuming a conjectural Bogomolov-Gieseker-type inequality proposed by Bayer, Macri and the author.
引用
收藏
页码:217 / 250
页数:34
相关论文
共 35 条
[1]  
Andriyash E., 2008, PREPRINT
[2]  
Bayer A., 2011, PREPRINT
[3]  
Bayer A., 2011, J ALGEBRAIC GEOM
[4]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[5]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345
[6]   HALL ALGEBRAS AND CURVE-COUNTING INVARIANTS [J].
Bridgeland, Tom .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) :969-998
[7]  
Denef F., 2007, PREPRINT
[8]  
Diaconescu E., 2007, PREPRINT
[9]  
Ein Lawrence, 1993, J. Amer. Math. Soc., V6, P875
[10]  
Fujita T., 1987, Adv. Stud. Pure Math., V10, P167, DOI [10.2969/aspm/01010167.T13,14, DOI 10.2969/ASPM/01010167.T13,14, 10.2969/aspm/01010167, DOI 10.2969/ASPM/01010167]