Structural diversity in the AdoMet radical enzyme superfamily

被引:69
作者
Dowling, Daniel P. [5 ]
Vey, Jessica L. [4 ]
Croft, Anna K. [3 ]
Drennan, Catherine L. [1 ,2 ,5 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] Univ Wales Bangor, Bangor LL57 2UW, Gwynedd, Wales
[4] Calif State Univ Northridge, Dept Chem & Biochem, Northridge, CA 91330 USA
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2012年 / 1824卷 / 11期
基金
英国惠康基金; 美国国家科学基金会;
关键词
Adenosylmethionine; Iron-sulfur cluster; Adenosylcobalamin; Glycyl radical enzyme; SAM radical; PYRUVATE FORMATE-LYASE; X-RAY-STRUCTURE; ANAEROBIC RIBONUCLEOTIDE REDUCTASE; METHYLMALONYL-COA MUTASE; IRON-SULFUR CENTER; S-ADENOSYLMETHIONINE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; LYSINE 2,3-AMINOMUTASE; ACTIVATING ENZYME;
D O I
10.1016/j.bbapap.2012.04.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford L-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1178 / 1195
页数:18
相关论文
共 50 条
  • [31] The antiviral protein viperin is a radical SAM enzyme
    Duschene, Kaitlin S.
    Broderick, Joan B.
    FEBS LETTERS, 2010, 584 (06) : 1263 - 1267
  • [32] The Thiamine Biosynthetic Enzyme ThiC Catalyzes Multiple Turnovers and Is Inhibited by S-Adenosylmethionine (AdoMet) Metabolites
    Palmer, Lauren D.
    Downs, Diana M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (42) : 30693 - 30699
  • [33] Biochemical and Kinetic Characterization of Radical S-Adenosyl-L-methionine Enzyme HydG
    Driesener, Rebecca C.
    Duffus, Benjamin R.
    Shepard, Eric M.
    Bruzas, Ian R.
    Duschene, Kaitlin S.
    Coleman, Natalie J. -R.
    Marrison, Alexander P. G.
    Salvadori, Enrico
    Kay, Christopher W. M.
    Peters, John W.
    Broderick, Joan B.
    Roach, Peter L.
    BIOCHEMISTRY, 2013, 52 (48) : 8696 - 8707
  • [34] Modeling the Initiation Phase of the Catalytic Cycle in the Glycyl-Radical Enzyme Benzylsuccinate Synthase
    Szaleniec, Maciej
    Oleksy, Gabriela
    Sekula, Anna
    Aleksic, Ivana
    Pietras, Rafal
    Sarewicz, Marcin
    Kraemer, Kai
    Pierik, Antonio J.
    Heider, Johann
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (24) : 5823 - 5839
  • [35] Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG
    Suess, Daniel L. M.
    Kuchenreuther, Jon M.
    De La Paz, Liliana
    Swartz, James R.
    Briet, R. David
    INORGANIC CHEMISTRY, 2016, 55 (02) : 478 - 487
  • [36] X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification
    Goldman, Peter J.
    Grove, Tyler L.
    Sites, Lauren A.
    McLaughlin, Martin I.
    Booker, Squire J.
    Drennan, Catherine L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (21) : 8519 - 8524
  • [37] Structural and Functional Diversity of the Peroxiredoxin 6 Enzyme Family
    Rahaman, Hamidur
    Herojit, Khundrakpam
    Singh, Laishram Rajendrakumar
    Haobam, Reena
    Fisher, Aron B.
    ANTIOXIDANTS & REDOX SIGNALING, 2024, 40 (13-15) : 759 - 775
  • [38] Structural Biology of the Major Facilitator Superfamily Transporters
    Yan, Nieng
    ANNUAL REVIEW OF BIOPHYSICS, VOL 44, 2015, 44 : 257 - 283
  • [39] Structural divergence and functional versatility of the rhodopsin superfamily
    Kouyama, Tsutomu
    Murakami, Midori
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2010, 9 (11) : 1458 - 1465
  • [40] Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme
    Vey, Jessica L.
    Yang, Jian
    Li, Meng
    Broderick, William E.
    Broderick, Joan B.
    Drennan, Catherine L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (42) : 16137 - 16141