Structural diversity in the AdoMet radical enzyme superfamily

被引:69
作者
Dowling, Daniel P. [5 ]
Vey, Jessica L. [4 ]
Croft, Anna K. [3 ]
Drennan, Catherine L. [1 ,2 ,5 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] Univ Wales Bangor, Bangor LL57 2UW, Gwynedd, Wales
[4] Calif State Univ Northridge, Dept Chem & Biochem, Northridge, CA 91330 USA
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2012年 / 1824卷 / 11期
基金
英国惠康基金; 美国国家科学基金会;
关键词
Adenosylmethionine; Iron-sulfur cluster; Adenosylcobalamin; Glycyl radical enzyme; SAM radical; PYRUVATE FORMATE-LYASE; X-RAY-STRUCTURE; ANAEROBIC RIBONUCLEOTIDE REDUCTASE; METHYLMALONYL-COA MUTASE; IRON-SULFUR CENTER; S-ADENOSYLMETHIONINE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; LYSINE 2,3-AMINOMUTASE; ACTIVATING ENZYME;
D O I
10.1016/j.bbapap.2012.04.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford L-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1178 / 1195
页数:18
相关论文
共 50 条
  • [21] Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme
    Shisler, Krista A.
    Hutcheson, Rachel U.
    Horitani, Masaki
    Duschene, Kaitlin S.
    Crain, Adam V.
    Byer, Amanda S.
    Shepard, Eric M.
    Rasmussen, Ashley
    Yang, Jian
    Broderick, William E.
    Vey, Jessica L.
    Drennan, Catherine L.
    Hoffman, Brian M.
    Broderick, Joan B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) : 11803 - 11813
  • [22] Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2
    Umitsu, Masataka
    Nishimasu, Hiroshi
    Noma, Akiko
    Suzuki, Tsutomu
    Ishitani, Ryuichiro
    Nureki, Osamu
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (37) : 15616 - 15621
  • [23] Reaction of AdoMet with ThiC Generates a Backbone Free Radical
    Martinez-Gomez, N. Cecilia
    Poyner, Russell R.
    Mansoorabadi, Steven O.
    Reed, George H.
    Downs, Diana M.
    BIOCHEMISTRY, 2009, 48 (02) : 217 - 219
  • [24] Adenosylation reactions catalyzed by the radical S-adenosylmethionine superfamily enzymes
    Ding, Wei
    Ji, Xinjian
    Zhong, Yuting
    Xu, Kuang
    Zhang, Qi
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2020, 55 : 86 - 95
  • [25] The radical SAM superfamily
    Frey, Perry A.
    Hegeman, Adrian D.
    Ruzicka, Frank J.
    CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2008, 43 (01) : 63 - 88
  • [26] Chlorite Dismutases, DyPs, and EfeB: 3 Microbial Heme Enzyme Families Comprise the CDE Structural Superfamily
    Goblirsch, Brandon
    Kurker, Richard C.
    Streit, Bennett R.
    Wilmot, Carrie M.
    DuBois, Jennifer L.
    JOURNAL OF MOLECULAR BIOLOGY, 2011, 408 (03) : 379 - 398
  • [27] Solution structure and biochemical characterization of a spare part protein that restores activity to an oxygen-damaged glycyl radical enzyme
    Bowman, Sarah E. J.
    Backman, Lindsey R. F.
    Bjork, Rebekah E.
    Andorfer, Mary C.
    Yori, Santiago
    Caruso, Alessio
    Stultz, Collin M.
    Drennan, Catherine L.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2019, 24 (06): : 817 - 829
  • [28] Lactate Dehydrogenase Superfamily in Rice and Arabidopsis: Understanding the Molecular Evolution and Structural Diversity
    Chatterjee, Yajnaseni
    Bhowal, Bidisha
    Gupta, Kapuganti Jagadis
    Pareek, Ashwani
    Singla-Pareek, Sneh Lata
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [29] Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain
    Holliday, Gemma L.
    Akiva, Eyal
    Meng, Elaine C.
    Brown, Shoshana D.
    Calhoun, Sara
    Pieper, Ursula
    Sali, Andrej
    Booker, Squire J.
    Babbitt, Patricia C.
    RADICAL SAM ENZYMES, 2018, 606 : 1 - 71
  • [30] Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions
    Marsh, E. Neil G.
    Patterson, Dustin P.
    Li, Lei
    CHEMBIOCHEM, 2010, 11 (05) : 604 - 621