Green synthesis of metalloid nanoparticles and its biological applications: A review

被引:5
作者
Roy, Arpita [1 ]
Datta, Shreeja [2 ]
Luthra, Ritika [2 ]
Khan, Muhammad Arshad [3 ]
Gacem, Amel [4 ]
Abul Hasan, Mohd [5 ]
Yadav, Krishna Kumar [6 ]
Ahn, Yongtae [7 ]
Jeon, Byong-Hun [7 ]
机构
[1] Sharda Univ, Sch Engn & Technol, Dept Biotechnol, Greater Noida, India
[2] Delhi Technol Univ, Delhi, India
[3] King Khalid Univ, Coll Engn, Dept Chem Engn, Abha, Saudi Arabia
[4] Univ 20 Aout 1955, Fac Sci, Dept Phys, Skikda, Algeria
[5] King Khalid Univ, Coll Engn, Civil Engn Dept, Abha, Saudi Arabia
[6] Madhyanchal Profess Univ, Fac Sci & Technol, Bhopal, India
[7] Hanyang Univ, Dept Earth Resources & Environm Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
nanoparticles; metalloids; green materials; bioactive compounds; applications; BIOGENIC TELLURIUM NANOPARTICLES; SILVER NANOPARTICLES; SILICA NANOPARTICLES; BIOSYNTHESIS; SEEDS; NANOBIOTECHNOLOGY; TRANSITIONS; RESISTANCE; EXPRESSION; EVOLUTION;
D O I
10.3389/fchem.2022.994724
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthesis of metalloid nanoparticles using biological-based fabrication has become an efficient alternative surpassing the existing physical and chemical approaches because there is a need for developing safer, more reliable, cleaner, and more eco-friendly methods for their preparation. Over the last few years, the biosynthesis of metalloid nanoparticles using biological materials has received increased attention due to its pharmaceutical, biomedical, and environmental applications. Biosynthesis using bacterial, fungal, and plant agents has appeared as a faster developing domain in bio-based nanotechnology globally along with other biological entities, thus posing as an option for conventional physical as well as chemical methods. These agents can efficiently produce environment-friendly nanoparticles with the desired composition, morphology (shape as well as size), and stability, along with homogeneity. Besides this, metalloid nanoparticles possess various applications like antibacterial by damaging bacterial cell membranes, anticancer due to damaging tumour sites, targeted drug delivery, drug testing, and diagnostic roles. This review summarizes the various studies associated with the biosynthesis of metalloid particles, namely, tellurium, arsenic, silicon, boron, and antimony, along with their therapeutic, pharmaceutical and environmental applications.
引用
收藏
页数:12
相关论文
共 103 条
[21]  
Derbalah A., 2018, Egypt. J. Basic Appl. Sci, V5, P145, DOI DOI 10.1016/J.EJBAS.2018.05.002
[22]   Ultrasound-Assisted Facile Green Synthesis of Hexagonal Boron Nitride Nanosheets and Their Applications [J].
Deshmukh, Aarti R. ;
Jeong, Ji Wan ;
Lee, Su Jung ;
Park, Go Un ;
Kim, Beom Soo .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20) :17114-17125
[23]   Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor [J].
Duran, Nelson ;
Cuevas, Raphael ;
Cordi, Livia ;
Rubilar, Olga ;
Cristina Diez, Maria .
SPRINGERPLUS, 2014, 3
[24]   Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? [J].
Estevam, Ethiene Castellucci ;
Griffin, Sharoon ;
Nasim, Muhammad Jawad ;
Denezhkin, Polina ;
Schneider, Ramona ;
Lilischkis, Rainer ;
Dominguez-Alvarez, Enrique ;
Witek, Karolina ;
Latacz, Gniewomir ;
Keck, Cornelia ;
Schaefer, Karl-Herbert ;
Kie-Kononowicz, Katarzyna ;
Handzlik, Jadwiga ;
Jacob, Claus .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 324 :22-30
[25]   Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria [J].
Fayaz, Amanulla Mohammed ;
Balaji, Kulandaivelu ;
Girilal, Morukattu ;
Yadav, Ruchi ;
Kalaichelvan, Pudupalayam Thangavelu ;
Venketesan, Ramasamy .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2010, 6 (01) :103-109
[26]   Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation [J].
Garcia, Daniela Armijo ;
Mendoza, Lupe ;
Vizuete, Karla ;
Debut, Alexis ;
Arias, Marbel Torres ;
Gavilanes, Alex ;
Terencio, Thibault ;
Avila, Edward ;
Jeffryes, Clayton ;
Dahoumane, Si Amar .
MOLECULES, 2020, 25 (21)
[27]   Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain [J].
Gill, SR ;
Fouts, DE ;
Archer, GL ;
Mongodin, EF ;
DeBoy, RT ;
Ravel, J ;
Paulsen, IT ;
Kolonay, JF ;
Brinkac, L ;
Beanan, M ;
Dodson, RJ ;
Daugherty, SC ;
Madupu, R ;
Angiuoli, SV ;
Durkin, AS ;
Haft, DH ;
Vamathevan, J ;
Khouri, H ;
Utterback, T ;
Lee, C ;
Dimitrov, G ;
Jiang, LX ;
Qin, HY ;
Weidman, J ;
Tran, K ;
Kang, K ;
Hance, IR ;
Nelson, KE ;
Fraser, CM .
JOURNAL OF BACTERIOLOGY, 2005, 187 (07) :2426-2438
[28]   Black silicon as a platform for bacterial detection [J].
Hartley, Jennifer S. ;
Hlaing, M. Myintzu ;
Seniutinas, Gediminas ;
Juodkazis, Saulius ;
Stoddart, Paul R. .
BIOMICROFLUIDICS, 2015, 9 (06)
[29]   Vorinostat as potential antiparasitic drug [J].
Herrera-Martinez, M. ;
Orozco-Samperio, E. ;
Montano, S. ;
Ariza-Ortega, J. A. ;
Flores-Garcia, Y. ;
Lopez-Contreras, L. .
EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (13) :7412-7419
[30]   One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer [J].
Huang, Xin ;
Wu, Hao ;
Pu, Shangzhi ;
Zhang, Wenhua ;
Liao, Xuepin ;
Shi, Bi .
GREEN CHEMISTRY, 2011, 13 (04) :950-957