Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets

被引:71
作者
Gupta, Preeti [1 ,2 ]
Bhargava, Richa [1 ]
Das, Raja [1 ,2 ]
Poddar, Pankaj [1 ,2 ,3 ]
机构
[1] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
[2] Anusandhan Bhawan, Acad Sci & Innovat Res, New Delhi 110001, India
[3] CSIR Natl Chem Lab, Ctr Excellence Surface Sci, Pune 411008, Maharashtra, India
关键词
RARE-EARTH; ANODE MATERIALS; TEMPERATURE; LACRO3; MULTIFERROICS; LNCRO(3); SIZE; XPS;
D O I
10.1039/c3ra43088j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this contribution, the structural and magnetic properties of DyCrO3 nanoplatelets, synthesized by a hydrolytic sol-gel method, have been investigated. The crystalline phase of DyCrO3 was attained at the decomposition temperature of 800 degrees C for citric acid and oxalic acid, respectively and their structural analysis indicates a distorted orthorhombic perovskite structure of the DyCrO3 nanoplatelets. The dc-magnetization curve shows the Neel temperature of similar to 144 and similar to 146 K for DyCrO3 nanoplatelets synthesized using citric acid (DCO (C)) and oxalic acid (DCO (O)), respectively. In addition, DCO (O) shows weak anomalies at similar to 22 and similar to 6 K in the zero-field-cooled and field-cooled magnetization curves. Below the Neel temperature, DCO (C) and DCO (O) exhibit cross-over from positive to negative magnetization at similar to 143 and similar to 145 K, respectively. This was attributed to a Dy3+-Cr3+ interaction, which resulted in a weak ferromagnetic coupling (seen as a small opening in the M-H curves). The low temperature transition observed at similar to 6 K can be assigned to the onset of Dy3+-Dy3+ antiferromagnetic interaction.
引用
收藏
页码:26427 / 26432
页数:6
相关论文
共 45 条
[1]   Synthesis and Characterization of LiNiO2 Nanopowder with Various Chelating Agents [J].
Balandeh, Mehrdad ;
Asgari, Sirous .
JOURNAL OF NANOMATERIALS, 2010, 2010
[2]   Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles [J].
Bansal, Vipul ;
Poddar, Pankaj ;
Ahmad, Absar ;
Sastry, Murali .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (36) :11958-11963
[3]  
Bertaut E. F., 1963, Magnetism, VIII, P149, DOI DOI 10.1016/B978-0-12-575303-6.50011-7
[4]   Magnetoelectronics with magnetoelectrics [J].
Binek, C ;
Doudin, B .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (02) :L39-L44
[5]   Synthesis and Characterization of LaAlO3 Nanopowders by Various Fuels [J].
Chandradass, J. ;
Balasubramanian, M. ;
Kim, Ki Hyeon .
MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (12) :1449-1453
[6]   Multiferroics: a magnetic twist for ferroelectricity [J].
Cheong, Sang-Wook ;
Mostovoy, Maxim .
NATURE MATERIALS, 2007, 6 (01) :13-20
[7]   Effect of particle size and annealing on spin and phonon behavior in TbMnO3 [J].
Das, Raja ;
Jaiswal, Adhish ;
Adyanthaya, Suguna ;
Poddar, Pankaj .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (06)
[8]   Origin of Magnetic Anomalies below the Neel Temperature in Nanocrystalline LuMnO3 [J].
Das, Raja ;
Jaiswal, Adhish ;
Adyanthaya, Suguna ;
Poddar, Pankaj .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (28) :12104-12109
[9]   CITRATE GEL PROCESSING OF THE PEROVSKITE LANTHANIDE CHROMITES [J].
DEVI, PS .
JOURNAL OF MATERIALS CHEMISTRY, 1993, 3 (04) :373-379
[10]   Multiferroic and magnetoelectric materials [J].
Eerenstein, W. ;
Mathur, N. D. ;
Scott, J. F. .
NATURE, 2006, 442 (7104) :759-765