State of health estimation for lithium ion batteries based on charging curves

被引:133
|
作者
Guo, Zhen [1 ]
Qiu, Xinping [2 ]
Hou, Guangdong [1 ]
Liaw, Bor Yann [3 ]
Zhang, Changshui [1 ]
机构
[1] Tsinghua Univ, Dept Automat, TNList, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
[3] Univ Hawaii Manoa, SOEST, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA
关键词
State of health; Lithium ion battery; Charge curve; Nonlinear least squares method; IDENTIFICATION; CELLS; SOC;
D O I
10.1016/j.jpowsour.2013.10.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An effective method to estimate the state of health (SOH) of lithium ion batteries is illustrated in this work. This method uses an adaptive transformation of charging curves at different stages of life to quantify the extent of capacity fade and derive a time-based parameter to enable an accurate SOH estimation. This approach is easy for practical implementation and universal to chemistry or cell geometry, with minimal demand of learning. With a typical constant current-constant voltage (CC-CV) charging method for a lithium ion battery, this approach uses an equivalent circuit model to characterize the CC portion of the charging curve and derive a transformation function and a time-based parameter to estimate SOH at any stage of life via a nonlinear least squares method to identify model parameters. The SOH estimation errors (discrepancy between estimated and experimental values, denoted as Delta SOH) are under 2% before the end of life in cases shown at 25 degrees C and 60 degrees C and a range of typical discharging rates up to 3C. With different sizes and chemistries, the Delta SOHs are all less than 3%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 462
页数:6
相关论文
共 50 条
  • [21] Robust State of Health Estimation for Lithium-Ion Batteries Considering Random Charging Behaviors
    Shu, Xing
    Chen, Zheng
    Shen, Jiangwei
    Ye, Ming
    Zhang, Qiang
    Liu, Yonggang
    Liu, Xi
    Hu, Yuanzhi
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 5545 - 5554
  • [22] A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves
    Schmitz, Mano
    Kowal, Julia
    BATTERIES-BASEL, 2024, 10 (06):
  • [23] Intelligent Learning Method for Capacity Estimation of Lithium-Ion Batteries Based on Partial Charging Curves
    Ding, Can
    Guo, Qing
    Zhang, Lulu
    Wang, Tao
    ENERGIES, 2024, 17 (11)
  • [24] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [25] State of Health Estimation of Lithium-Ion Batteries based on the CC-CV Charging Curve and Neural Network
    Siani, Ali Ghasemi
    Mousavi Badjani, Mehdi
    Rismani, Hadi
    Saeedimoghadam, Mojtaba
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2950 - 2963
  • [26] State of Health Estimation of Lithium-ion Batteries Based on the Partial Charging Voltage Segment and Kernel Ridge Regression
    Fan Y.
    Xiao F.
    Xu J.
    Yang G.
    Tang X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (16): : 5661 - 5669
  • [27] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    Electrochimica Acta, 2022, 428
  • [28] State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current-Constant Voltage Charging Curve
    Xiao, Bin
    Xiao, Bing
    Liu, Luoshi
    ELECTRONICS, 2020, 9 (08) : 1 - 14
  • [29] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [30] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397