Density functional theory study into H2O dissociative adsorption on the Fe5C2(010) surface

被引:25
|
作者
Gao, Rui [1 ]
Cao, Dong-Bo [1 ]
Liu, Shaoli [1 ]
Yang, Yong [1 ]
Li, Yong-Wang [1 ]
Wang, Jianguo [1 ]
Jiao, Haijun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Rostock, Leibniz Inst Katalyse eV, D-18059 Rostock, Germany
基金
中国国家自然科学基金;
关键词
DFT; Iron carbide; H2O dissociation; Surface oxidation; FISCHER-TROPSCH SYNTHESIS; RAY-ABSORPTION SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; WATER-ADSORPTION; IRON CATALYSTS; BASIS-SET; FE(100); FE5C2(100); OXIDATION;
D O I
10.1016/j.apcata.2013.09.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spin-polarized density functional theory calculations (GGA-PBE) have been carried out to study H2O adsorption and dissociation on the Fe5C2(010) surface. It is found that the iron region on the Fe5C2 (010) surface is active for H2O adsorption and dissociation, while the carbon region is inactive. For H2O adsorption in the iron region, H2O prefers the top site of the surface iron atoms, and significant hydrogen bonding interaction has been found at high H2O coverage on the basis of the computed adsorption energies and the intermolecular O-H distances. In the iron region H2O dissociation (H2O -> H + OH; OH -> H + O) is favored both kinetically and thermodynamically. On one O pre-covered surface, O-assisted H2O dissociation becomes favorable kinetically (O + H2O -> OH + OH) and further OH dissociation (OH -> H + O) becomes difficult thermodynamically. Upon the increase of surface O coverage, H2O dissociation becomes difficult, while H-2 formation from the surface adsorbed H atoms becomes easy. On the potential energy surface, the dissociation of four H2O molecules into four surface O and four H-2 molecules (4H(2)O(g) -> 4O(s) + 4H(2)(g)) is still thermodynamically favorable by 0.63 eV, and the iron region is fully covered by surface oxygen atoms. Thermodynamic analysis reveals clearly that the catalyst surface has always adsorbed oxygen atoms under water environment and their number in the iron region depends on temperature and water content; and high temperature and low H2O partial pressure can maintain the catalyst stability and excess H2O partial pressure will result in full oxidation. For the oxidation of one surface carbon atom, it is necessary to migrate one of the four adsorbed oxygen atoms from the iron region to the carbon region, and the H2O assisted CO2 formation is more favorable than the direct CO2 formation. The overall surface carbon oxidation, FexCy + 4H(2)O(g) -> O-2 FexCy-1 + CO2(g) 4H(2)(g), is thermodynamically accessible. Detailed comparisons show that the Fe(100) and Fe5C2(010) surfaces are very similar in H2O adsorption and dissociation at low coverage. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 383
页数:14
相关论文
共 50 条
  • [1] Density functional theory study of hydrogen adsorption on Fe5C2(001), Fe5C2(110), and Fe5C2(100)
    Cao, DB
    Zhang, FQ
    Li, YW
    Wang, JG
    Jiao, HJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02): : 833 - 844
  • [2] Adsorption of H2O on the V2O5(010) surface studied by periodic density functional calculations
    Yin, XL
    Fahmi, A
    Han, HM
    Endou, A
    Ammal, SSC
    Kubo, M
    Teraishi, K
    Miyamoto, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (16): : 3218 - 3224
  • [3] Bulk and surface analysis of Hagg Fe carbide (Fe5C2):: a density functional theory study
    Steynberg, P. J.
    van den Berg, J. A.
    van Rensburg, W. Janse
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
  • [4] Density functional theory study of adsorption of H2O on γ-U(110) surface
    S-L Zhu
    Y-X Yang
    Z-F Zhang
    X-H Liu
    X-F Tian
    Y Yu
    D Li
    Indian Journal of Physics, 2023, 97 : 2297 - 2306
  • [5] Density functional theory study of adsorption of H2O on γ-U(110) surface
    Zhu, S-L
    Yang, Y-X
    Zhang, Z-F
    Liu, X-H
    Tian, X-F
    Yu, Y.
    Li, D.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (08) : 2297 - 2306
  • [6] Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces
    Cao, DB
    Zhang, FQ
    Li, YW
    Jiao, HJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (26): : 9094 - 9104
  • [7] Adsorption of H2O, OH, and O on CuCl(111) surface:: A density functional theory study
    Wang, Xia
    Chen, Wen-Kai
    Sun, Bao-Zhen
    Lu, Chun-Hai
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2008, 21 (01) : 39 - 44
  • [8] A density functional theory study on the adsorption of H2O and OH on UO(100) surface
    Zheng Jin-De
    Lu Chun-Hai
    Chen Wen-Kai
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2008, 24 (09) : 1374 - 1380
  • [9] DENSITY FUNCTIONAL THEORY STUDY OF H2O ADSORPTION AND DISSOCIATION ON Al (111) SURFACE
    Yang, Lixia
    Lei, Xiaoli
    Feng, Jun
    Zhang, Yuxin
    Liu, Mingxing
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (05):
  • [10] Adsorption and diffusion of H2O molecule on the Be(0001) surface: A density-functional theory study
    Wang, Shuang-Xi
    Zhang, Peng
    Zhao, Jian
    Li, Shu-Shen
    Zhang, Ping
    PHYSICS LETTERS A, 2011, 375 (36) : 3208 - 3212