ALGEBRAS SATISFYING THE POLYNOMIAL IDENTITY [x1, x2][x3, x4, x5]=0

被引:4
作者
Di Vincenzo, Onofrio M. [1 ]
Drensky, Vesselin [2 ]
Nardozza, Vincenzo [3 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
Polynomial identities; subvarieties; asymptotic equivalence; PI-exponent; upper triangular matrices;
D O I
10.1142/S0219498804000757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, and M-5 the variety of associative unitary algebras defined by the polynomial identity [x(1), x(2)][x(3), x(4), x(5)] = 0. This variety is one of the several minimal varieties of exponent 3 (and all proper subvarieties are of exponents 1 and 2). We describe asymptotically its proper subvarieties. More precisely, we define certain algebras R-2k for any k is an element of N and show that if U is a proper subvariety of M-5, then the T-ideal of its polynomial identities is asymptotically equivalent to the T-ideal of the identities of one of the algebras K, E, R-2k or R-2k circle plus E, for a suitable k is an element of N. We give also another description relating the T-ideals of the proper subvarieties of M-5 with the polynomial identities of upper triangular matrices of a suitable size.
引用
收藏
页码:121 / 142
页数:22
相关论文
共 19 条
[11]   POLYNOMIAL IDENTITIES OF GRASSMANN ALGEBRA [J].
KRAKOWSKI, D ;
REGEV, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) :429-438
[12]   MATRIX REPRESENTATION FOR ASSOCIATIVE ALGEBRAS .1. [J].
LEWIN, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 188 (02) :293-308
[13]  
Maltsev Yu. N., 1971, ALGEBRA LOGIKA+, V10, P393
[14]   EXISTENCE OF IDENTITIES IN A BY B [J].
REGEV, A .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (02) :131-&
[15]  
Siderov PN., 1981, PLISKA STUD MATH BUL, V2, P143
[16]  
Specht W., 1950, MATH Z, V52, P557, DOI 10.1007/BF02230710
[17]  
Stoyanova-Venkova A. N., 1981, THESIS
[18]  
Stoyanova-Venkova A. N., 1982, C R ACAD BULGARE SCI, V35, P867
[19]  
Zaicev M., 2000, SERDICA MATH J, V26, P245