Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors

被引:96
作者
Samuel, Edmund [1 ]
Joshi, Bhavana [1 ]
Kim, Min-Woo [1 ]
Kim, Yong-Il [1 ]
Swihart, Mark T. [2 ,3 ]
Yoon, Sam S. [1 ]
机构
[1] Korea Univ, Sch Mech Engn, Seoul 136713, South Korea
[2] Univ Buffalo State Univ New York, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[3] Univ Buffalo State Univ New York, RENEW Inst, Buffalo, NY 14260 USA
基金
新加坡国家研究基金会;
关键词
Mn/ZIF-8; Carbon nanofiber; Supercapacitor; Electrospinning; POROUS CARBON; ROOM-TEMPERATURE; FACILE SYNTHESIS; GRAPHENE FOAM; ZIF-8; COMPOSITE; CARBONIZATION; FABRICATION; NANOSHEETS; POLYHEDRA;
D O I
10.1016/j.cej.2019.04.065
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We demonstrate freestanding, flexible, and cost-effective supercapacitor electrodes comprising carbon nanofibers (CNFs) decorated with metal oxide framework (MOF)-derived manganese-doped zinc oxide (Mn@ZnO). Nanoparticles of manganese-doped zeolitic imidazolate framework (ZIF-8) were grown directly on electrospun polyacrylonitrile nanofibers by a simple solution-phase synthesis. Carbonization of these composite fibers produced high surface area dodecahedral Mn@ZnO on core CNFs that provide fast electron-transfer pathways. The synergy between Mn@ZnO (active sites for Faradaic reactions) and the highly electrically conductive carbon nanofiber improves the performance of the supercapacitor electrode. The Mn@ZnO/CNF electrodes exhibit a high specific capacitance of 501 F.g(-1) and retain> 92% of their initial capacitance after 10,000 cycles. The optimized Mn@ZnO/CNF electrodes deliver impressive energy densities of 72.1 W.h.kg(-1) and 33.3 W.h.kg(-1) at power densities of 500 W.kg(-1) and 5000 W.kg(-1), respectively. This electrochemical performance demonstrates that the Mn@ZnO/CNF nanostructured composite is a robust electrode material for long-lifetime high-rate energy storage/delivery devices.
引用
收藏
页码:657 / 665
页数:9
相关论文
共 56 条
  • [1] INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES
    ARDIZZONE, S
    FREGONARA, G
    TRASATTI, S
    [J]. ELECTROCHIMICA ACTA, 1990, 35 (01) : 263 - 267
  • [2] 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors
    Bao, Weizhai
    Mondal, Anjon Kumar
    Xu, Jing
    Wang, Chengyin
    Su, Dawei
    Wang, Guoxiu
    [J]. JOURNAL OF POWER SOURCES, 2016, 325 : 286 - 291
  • [3] Carbons and Electrolytes for Advanced Supercapacitors
    Beguin, Francois
    Presser, Volker
    Balducci, Andrea
    Frackowiak, Elzbieta
    [J]. ADVANCED MATERIALS, 2014, 26 (14) : 2219 - 2251
  • [4] Cu-Mn spinel oxide catalyzed synthesis of imidazo[1,2-a]pyridines through domino three-component coupling and 5-exo-dig cyclization in water
    Bharate, Jaideep B.
    Guru, Santosh K.
    Jain, Shreyans K.
    Meena, Samdarshi
    Singh, Parvinder Pal
    Bhushan, Shashi
    Singh, Baldev
    Bharate, Sandip B.
    Vishwakarma, Ram A.
    [J]. RSC ADVANCES, 2013, 3 (43): : 20869 - 20876
  • [5] Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials
    Blomquist, Nicklas
    Wells, Thomas
    Andres, Britta
    Backstrom, Joakim
    Forsberg, Sven
    Olin, Hakan
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] To Be or Not To Be Pseudocapacitive?
    Brousse, Thierry
    Belanger, Daniel
    Long, Jeffrey W.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) : A5185 - A5189
  • [7] Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors
    Cai, Chenglong
    Zou, Yongjin
    Xiang, Cuili
    Chu, Hailiang
    Qiu, Shujun
    Sui, Qingli
    Xu, Fen
    Sun, Lixian
    Shah, Afzal
    [J]. APPLIED SURFACE SCIENCE, 2018, 440 : 47 - 54
  • [8] A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe)
    Campagnol, Nicolo
    Romero-Vara, Ricardo
    Deleu, Willem
    Stappers, Linda
    Binnemans, Koen
    De Vos, Dirk E.
    Fransaer, Jan
    [J]. CHEMELECTROCHEM, 2014, 1 (07): : 1182 - 1188
  • [9] Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: Structure and performance
    Chan, Sophia
    Jankovic, Jasna
    Susac, Darija
    Saha, Madhu Sudan
    Tam, Mickey
    Yang, Heejae
    Ko, Frank
    [J]. JOURNAL OF POWER SOURCES, 2018, 392 : 239 - 250
  • [10] Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering
    Cravillon, Janosch
    Nayuk, Roman
    Springer, Sergej
    Feldhoff, Armin
    Huber, Klaus
    Wiebcke, Michael
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (08) : 2130 - 2141