NUMERICAL INVERSE LAPLACE HOMOTOPY TECHNIQUE FOR FRACTIONAL HEAT EQUATIONS

被引:62
作者
Yavuz, Mehmet [1 ]
Ozdemir, Necati [2 ]
机构
[1] Necmettin Erbakan Univ, Dept Math Comp Sci, Fac Sci, Konya, Turkey
[2] Balikesir Univ, Fac Sci & Arts, Dept Math, Balikesir, Turkey
来源
THERMAL SCIENCE | 2018年 / 22卷
关键词
fractional heat equation; Laplace transform; Caputo derivative; homotopy perturbation method; LONG-WAVE EQUATION; PERTURBATION METHOD; BROWNIAN-MOTION; CONDUCTION; TRANSFORM;
D O I
10.2298/TSCI170804285Y
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we have aimed the numerical inverse Laplace homotopy technique for solving some interesting 1-D time fractional heat equations. This method is based on the Laplace homotopy perturbation method, which is combined form of the Laplace transform and the homotopy perturbation method. Firstly, we have applied to the fractional 1-D PDE by using He's polynomials. Then we have used Laplace transform method and discussed how to solve these PDE by using Laplace homotopy perturbation method. We have declared that the proposed model is very efficient and powerful technique in finding approximate solutions to the fractional PDE.
引用
收藏
页码:S185 / S194
页数:10
相关论文
共 35 条
[21]   On the coupling of the homotopy perturbation method and Laplace transformation [J].
Madani, Mohammad ;
Fathizadeh, Mahdi ;
Khan, Yasir ;
Yildirim, Ahmet .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1937-1945
[22]   The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics [J].
Odibat, Zaid ;
Momani, Shaher .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2199-2208
[23]   Numerical Solution of Fractional Black-Scholes Equation by Using the Multivariate Pade Approximation [J].
Ozdemir, N. ;
Yavuz, M. .
ACTA PHYSICA POLONICA A, 2017, 132 (03) :1050-1053
[24]   Analysis of an axis-symmetric fractional diffusion-wave problem [J].
Ozdemir, N. ;
Agrawal, O. P. ;
Karadeniz, D. ;
Iskender, B. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
[25]  
Ozdemir N., 2011, Int. J. Optim. Control Theor. Appl, V1, P17, DOI [10.11121/ijocta.01.2011.0028, DOI 10.11121/IJOCTA.01.2011.0028]
[26]   CONTROL OF THERMAL STRESSES IN AXISSYMMETRIC PROBLEMS OF FRACTIONAL THERMOELASTICITY FOR AN INFINITE CYLINDRICAL DOMAIN [J].
Povstenko, Yuriy ;
Avci, Derya ;
Eroglu, Beyza B. Iskender ;
Ozdemir, Necati .
THERMAL SCIENCE, 2017, 21 (01) :19-28
[27]   Application of homotopy perturbation method in nonlinear heat conduction and convection equations [J].
Rajabi, A. ;
Ganji, D. D. ;
Taherian, H. .
PHYSICS LETTERS A, 2007, 360 (4-5) :570-573
[28]   NUMERICAL INVERSION OF LAPLACE TRANSFORMS [J].
STEHFEST, H .
COMMUNICATIONS OF THE ACM, 1970, 13 (01) :47-&
[29]  
Tablot A., 1979, IMA Journal of Applied Mathematics, V23, P97, DOI [10.1093/imamat/23.1.97, DOI 10.1093/IMAMAT/23.1.97]
[30]   ASSESSMENT OF HOMOTOPY PERTURBATION METHOD IN NON-LINEAR CONVECTIVE-RADIATIVE NON-FOURIER CONDUCTION HEAT TRANSFER EQUATION WITH VARIABLE COEFFICIENT [J].
Torabi, Mohsen ;
Yaghoobi, Hessameddin ;
Saedodin, Seyfolah .
THERMAL SCIENCE, 2011, 15 :S263-S274