MELD as a metric for survival benefit of liver transplantation

被引:56
作者
Luo, Xun [1 ]
Leanza, Joseph [1 ]
Massie, Allan B. [1 ,2 ]
Garonzik-Wang, Jacqueline M. [1 ]
Haugen, Christine E. [1 ]
Gentry, Sommer E. [3 ]
Ottmann, Shane E. [1 ]
Segev, Dorry L. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Surg, Baltimore, MD 21205 USA
[2] Johns Hopkins Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[3] US Naval Acad, Dept Math, Baltimore, MD USA
关键词
classification systems: Model for End-stage Liver Disease (MELD); clinical research; practice; health services and outcomes research; liver disease; liver transplantation; hepatology; organ allocation; organ procurement and allocation; organ transplantation in general; patient survival; registry; registry analysis; SERUM SODIUM; WAITING-LIST; DISEASE; ALLOCATION; MORTALITY; MODEL; IMPACT;
D O I
10.1111/ajt.14660
中图分类号
R61 [外科手术学];
学科分类号
摘要
Currently, there is debate among the liver transplant community regarding the most appropriate mechanism for organ allocation: urgency-based (MELD) versus utility-based (survival benefit). We hypothesize that MELD and survival benefit are closely associated, and therefore, our current MELD-based allocation already reflects utility-based allocation. We used generalized gamma parametric models to quantify survival benefit of LT across MELD categories among 74196 adult liver-only active candidates between 2006 and 2016 in the United States. We calculated time ratios (TR) of relative life expectancy with transplantation versus without and calculated expected life years gained after LT. LT extended life expectancy (TR > 1) for patients with MELD > 10. The highest MELD was associated with the longest relative life expectancy (TR = (1.05)1.20(1.37) for MELD 11-15, (2.29)2.49(2.70) for MELD 16-20, (5.30)5.72(6.16) for MELD 21-25, (15.12)16.35(17.67) for MELD 26-30; (39.26)43.21(47.55) for MELD 31-34; (120.04)128.25(137.02) for MELD 35-40). As a result, candidates with the highest MELD gained the most life years after LT: 0.2, 1.5, 3.5, 5.8, 6.9, 7.2years for MELD 11-15, 16-20, 21-25, 26-30, 31-34, 35-40, respectively. Therefore, prioritizing candidates by MELD remains a simple, effective strategy for prioritizing candidates with a higher transplant survival benefit over those with lower survival benefit. The Model for End-Stage Liver Disease (MELD) functions not only as a predictor of waitlist mortality, but also as a measure of survival benefit after liver transplantation, and therefore our current allocation policy considers both equity and utility.
引用
收藏
页码:1231 / 1237
页数:7
相关论文
共 22 条
[1]   Assessing Variation in the Costs of Care Among Patients Awaiting Liver Transplantation [J].
Axelrod, D. A. ;
Dzebisashvili, N. ;
Lentine, K. ;
Segev, D. L. ;
Dickson, R. ;
Tuttle-Newhall, E. ;
Freeman, R. ;
Schnitzler, M. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2014, 14 (01) :70-78
[2]   Evidence-based incorporation of serum sodium concentration into MELD [J].
Biggins, Scott W. ;
Kim, W. Ray ;
Terrault, Norah A. ;
Saab, Sammy ;
Balan, Vijay ;
Schiano, Thomas ;
Benson, Joanne ;
Therneau, Terry ;
Kremers, Walter ;
Wiesner, Russell ;
Kamath, Patrick ;
Klintmalm, Goran .
GASTROENTEROLOGY, 2006, 130 (06) :1652-1660
[3]   Serum sodium predicts mortality in patients listed for liver transplantation [J].
Biggins, SW ;
Rodriguez, HJ ;
Bacchetti, P ;
Bass, NM ;
Roberts, JP ;
Terrault, NA .
HEPATOLOGY, 2005, 41 (01) :32-39
[4]   Liver Transplantation Cost in the Model for End-Stage Liver Disease Era: Looking Beyond the Transplant Admission [J].
Buchanan, Paula ;
Dzebisashvili, Nino ;
Lentine, Krista L. ;
Axelrod, David A. ;
Schnitzler, Mark A. ;
Salvalaggio, Paolo R. .
LIVER TRANSPLANTATION, 2009, 15 (10) :1270-1277
[5]   Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution [J].
Cox, Christopher ;
Chu, Haitao ;
Schneider, Michael F. ;
Munoz, Alvaro .
STATISTICS IN MEDICINE, 2007, 26 (23) :4352-4374
[6]   Characteristics associated with liver graft failure: The concept of a donor risk index [J].
Feng, S ;
Goodrich, NP ;
Bragg-Gresham, JL ;
Dykstra, DM ;
Punch, JD ;
DebRoy, MA ;
Greenstein, SM ;
Merion, RM .
AMERICAN JOURNAL OF TRANSPLANTATION, 2006, 6 (04) :783-790
[7]   Predicting the prognosis of chronic liver disease: An evolution from child to MELD [J].
Forman, LM ;
Lucey, MR .
HEPATOLOGY, 2001, 33 (02) :473-475
[8]   Survival benefit of liver transplantation and the effect of underlying liver disease [J].
Gleisner, Ana L. ;
Munoz, Alvaro ;
Brandao, Ajacio ;
Marroni, Claudio ;
Zanotelli, Maria Lucia ;
Cantisani, Guido Gracco ;
Moreira, Leila Beltrami ;
Choti, Michael A. ;
Pawlik, Timothy M. .
SURGERY, 2010, 147 (03) :392-404
[9]   One Size Does Not Fit All-Regional Variation in the Impact of the Share 35 Liver Allocation Policy [J].
Halazun, K. J. ;
Mathur, A. K. ;
Rana, A. A. ;
Massie, A. B. ;
Mohan, S. ;
Patzer, R. E. ;
Wedd, J. P. ;
Samstein, B. ;
Subramanian, R. M. ;
Campos, B. D. ;
Knechtle, S. J. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2016, 16 (01) :137-142
[10]   A model to predict survival in patients with end-stage liver disease [J].
Kamath, PS ;
Wiesner, RH ;
Malinchoc, M ;
Kremers, W ;
Therneau, TM ;
Kosberg, CL ;
D'Amico, G ;
Dickson, ER ;
Kim, WR .
HEPATOLOGY, 2001, 33 (02) :464-470