Lower bounds for athletic performance

被引:0
作者
Blest, DC [1 ]
机构
[1] UNIV TASMANIA, DEPT APPL COMP & MATH, LAUNCESTON, TASMANIA 7250, AUSTRALIA
关键词
asymptotes; non-linear fitting; prediction; sigmoidal models; world records in running;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper analyses a set of world records in athletic running events to extract long-term bounds for those events. The approach adopted is to identify a single parameter to represent the achieved standard of athletic performance at a series of fixed intervals. The long-term behaviour of this single parameter is then investigated by fitting a variety of non-linear models and restrictions on the accuracy of the fits are discussed. The paper concludes with a range of estimates for each of the events considered in the original data set.
引用
收藏
页码:243 / 253
页数:11
相关论文
共 11 条
[1]   NEW LAMPS FOR OLD - AN EXPLORATORY ANALYSIS OF RUNNING TIMES IN OLYMPIC GAMES [J].
CHATTERJEE, S ;
CHATTERJEE, S .
APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1982, 31 (01) :14-22
[2]  
DAVIES PCW, 1990, MATH SCI, P14
[3]  
Deakin M, 1967, MATH GAZ, V51, P100, DOI [10.2307/3614380, DOI 10.2307/3614380]
[4]  
HUXLEY D, 1989, MILLERS GUIDE
[5]   OPTIMAL VELOCITY IN A RACE [J].
KELLER, JB .
AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (05) :474-480
[6]  
MAHER MJ, 1983, APPL STAT-J ROY ST C, V32, P313
[7]   PARAMETER-ESTIMATION VERSUS CURVE FITTING - NEW LAMPS FOR OLD [J].
MCKEOWN, JJ ;
SPREVAK, D .
STATISTICIAN, 1992, 41 (03) :357-361
[8]  
Ratkowsky D.A., 1990, HDB NONLINEAR REGRES
[9]  
*SAS I, 1989, JMP VERS 2 SOFTW STA
[10]  
WALLECHINSKY D, 1984, COMPLETE BOOK OLYMPI