Periodic solutions of an infinite dimensional Hamiltonian system

被引:13
|
作者
Ding, YH [1 ]
Lee, C
机构
[1] Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
[2] Natl Changhua Univ Educ, Dept Math, Changhua, Taiwan
基金
中国国家自然科学基金;
关键词
infinite-dimensional Hamiltonian system; periodic solutions; variational method;
D O I
10.1216/rmjm/1181069621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish existence and multiplicity of periodic solutions to the infinite dimensional Hamiltonian system GRAPHICS where Omega subset of R-N is a bounded domain or Omega = RN. When Omega is bounded, we treat the situations where H(t, x, z) is, with respect to z = (u, v), sub- or superquadratic, or concave and convex, and discuss also the convergence to homoclinics of sequences of subharmonic orbits. If Omega = R-N, we handle the case of superquadratic nonlinearities.
引用
收藏
页码:1881 / 1908
页数:28
相关论文
共 50 条
  • [21] Families of Periodic Solutions for Some Hamiltonian PDEs
    Arioli, Gianni
    Koch, Hans
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 1 - 15
  • [22] Periodic solutions for second order Hamiltonian systems
    Qiongfen Zhang
    X. H. Tang
    Applications of Mathematics, 2012, 57 : 407 - 425
  • [23] Existence of periodic solutions of sublinear Hamiltonian systems
    Wei Ding
    Ding Bian Qian
    Chao Wang
    Zhi Guo Wang
    Acta Mathematica Sinica, English Series, 2016, 32 : 621 - 632
  • [24] Periodic solutions of perturbed central Hamiltonian systems
    Gallo, Anna Chiara
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (05):
  • [25] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Wei DING
    Ding Bian QIAN
    Chao WANG
    Zhi Guo WANG
    Acta Mathematica Sinica,English Series, 2016, (05) : 621 - 632
  • [26] PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS
    D'Agui, Giuseppina
    Livrea, Roberto
    MATEMATICHE, 2011, 66 (01): : 125 - +
  • [27] Periodic solutions to superlinear planar Hamiltonian systems
    Boscaggin, Alberto
    PORTUGALIAE MATHEMATICA, 2012, 69 (02) : 127 - 140
  • [28] Periodic solutions of perturbed central Hamiltonian systems
    Anna Chiara Gallo
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [29] Periodic solutions for second order Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    APPLICATIONS OF MATHEMATICS, 2012, 57 (04) : 407 - 425
  • [30] Periodic solutions for a class of nonautonomous Hamiltonian systems
    Long, YM
    Xu, XJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 455 - 463