Periodic solutions of an infinite dimensional Hamiltonian system

被引:13
|
作者
Ding, YH [1 ]
Lee, C
机构
[1] Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
[2] Natl Changhua Univ Educ, Dept Math, Changhua, Taiwan
基金
中国国家自然科学基金;
关键词
infinite-dimensional Hamiltonian system; periodic solutions; variational method;
D O I
10.1216/rmjm/1181069621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish existence and multiplicity of periodic solutions to the infinite dimensional Hamiltonian system GRAPHICS where Omega subset of R-N is a bounded domain or Omega = RN. When Omega is bounded, we treat the situations where H(t, x, z) is, with respect to z = (u, v), sub- or superquadratic, or concave and convex, and discuss also the convergence to homoclinics of sequences of subharmonic orbits. If Omega = R-N, we handle the case of superquadratic nonlinearities.
引用
收藏
页码:1881 / 1908
页数:28
相关论文
共 50 条