Fine Control Over the Size of Surfactant-Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing

被引:35
作者
Tresset, Guillaume [1 ]
Marculescu, Catalin [2 ]
Salonen, Anniina [1 ]
Ni, Ming [3 ]
Iliescu, Ciprian [3 ]
机构
[1] Univ Paris 11, Lab Phys Solides, CNRS, F-91405 Orsay, France
[2] IMT Bucharest, Natl Inst Res & Dev Microtechnol, Bucharest 077190, Romania
[3] Inst Bioengn & Nanotechnol, Singapore 138669, Singapore
关键词
HYBRID NANOPARTICLES; MICROFLUIDIC DEVICE; AQUEOUS-SOLUTIONS; COMPLEXES; DELIVERY; PLATFORM; AGENTS;
D O I
10.1021/ac4006155
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Synthesis of surfactant-polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.
引用
收藏
页码:5850 / 5856
页数:7
相关论文
共 29 条
[21]   Template-free Synthesis and Encapsulation Technique for Layer-by-Layer Polymer Nanocarrier Fabrication [J].
Qi, Aisha ;
Chan, Peggy ;
Ho, Jenny ;
Rajapaksa, Anushi ;
Friend, James ;
Yeo, Leslie .
ACS NANO, 2011, 5 (12) :9583-9591
[22]   Biopolymer microparticle and nanoparticle formation within a microfluidic device [J].
Rondeau, Elisabeth ;
Cooper-White, Justin J. .
LANGMUIR, 2008, 24 (13) :6937-6945
[23]   Polymer/surfactant complexes at the water/air interface: A surface tension and X-ray reflectivity study [J].
Stubenrauch, C ;
Albouy, PA ;
von Klitzing, R ;
Langevin, D .
LANGMUIR, 2000, 16 (07) :3206-3213
[24]   Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions [J].
Trabelsi, S. ;
Guillota, S. ;
Ritacco, H. ;
Boue, F. ;
Langevin, D. .
EUROPEAN PHYSICAL JOURNAL E, 2007, 23 (03) :305-311
[25]   Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants [J].
Trabelsi, Siwar ;
Raspaud, Eric ;
Langevin, Dominique .
LANGMUIR, 2007, 23 (20) :10053-10062
[26]   A microfluidic device for electrofusion of biological vesicles [J].
Tresset, G ;
Takeuchi, S .
BIOMEDICAL MICRODEVICES, 2004, 6 (03) :213-218
[27]   Electrical control of loaded biomimetic femtoliter vesicles in microfluidic system [J].
Tresset, Guillaume ;
Iliescu, Ciprian .
APPLIED PHYSICS LETTERS, 2007, 90 (17)
[28]   Supramolecular Assemblies of Lipid-Coated Polyelectrolytes [J].
Tresset, Guillaume ;
Lansac, Yves ;
Romet-Lemonne, Guillaume .
LANGMUIR, 2012, 28 (13) :5743-5752
[29]   Microfluidic technologies for accelerating the clinical translation of nanoparticles [J].
Valencia, Pedro M. ;
Farokhzad, Omid C. ;
Karnik, Rohit ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2012, 7 (10) :623-629