Development of Intelligent Control of Optimum Parameters in Deep Drawing of Sheet Metal Using Genetic Algorithm and Finite Element Methods

被引:2
作者
Bernai-Aguilar, Yudiesky [1 ,3 ]
Urama, Richard [2 ]
Marty-Delgado, Jose R. [1 ,3 ]
Celestine N, Okoye
机构
[1] Cent Univ Marta Abreu Las Villas, Dept Mech Engn, Carretera Camajuani Km 1-2, Santa Clara 50300, Villa Clara, Cuba
[2] Natl Board Technol Incubat, Abuja, Nigeria
[3] Fed Minist Educ, Ctr Sci Technol & Energy Res, Abuja, Nigeria
来源
MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4 | 2013年 / 690-693卷
关键词
Deep drawing; Intelligent control; Genetic algorithm; Finite element method; Sheet metal forming; BLANK OPTIMIZATION; FORMING PROCESSES; FORMABILITY; DESIGN; STEEL;
D O I
10.4028/www.scientific.net/AMR.690-693.2280
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main purpose of this work is to develop an intellectualized control technique on the deep drawing of rectangular pan made of AISI 304 DDQ stainless steel using genetic algorithm and finite element methods. These control methods are employed in order to investigate the most significant parameters in sheet metal forming process such as drawing force, with a view of optimizing these parameters. The genetic algorithm is used for the optimization purpose to minimize the force of the deep drawing process and to investigate the roles of other parameters. Experimental results show that these combinations of control system can cover a wide range of both materials and influential forming parameters automatically. The results further confirm that the developed system is effective and valid alternative for quick responsible control system with high flexibility.
引用
收藏
页码:2280 / +
页数:3
相关论文
共 27 条
  • [21] Determination of optimal loading profiles in hydromechanical deep drawing process using integrated adaptive finite element analysis and fuzzy control approach
    Ozturk, Ekrem
    Turkoz, Mevlut
    Halkaci, H. Selcuk
    Koc, Muammer
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 88 (9-12) : 2443 - 2459
  • [22] Optimum Design of an Inside-Out Axial-Flux Permanent-Magnet Motor Using Genetic Algorithm and Finite Element Analysis
    Mahmoudi, A.
    Kahourzade, S.
    Rahim, N. A.
    Hew, W. P.
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2012, 7 (02): : 3814 - 3827
  • [23] Development and Optimization for a New Planar Spring Using Finite Element Method, Deep Feedforward Neural Networks, and Water Cycle Algorithm
    Le Chau, Ngoc
    Le, Hieu Giang
    Dang, Van Anh
    Dao, Thanh-Phong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [24] Development of an optimized thermal cure cycle for a complex-shape composite part using a coupled finite element/genetic algorithm technique
    Mehdy Vafayan
    Mir Hamid Reza Ghoreishy
    Hossein Abedini
    Mohammad Hossein Beheshty
    Iranian Polymer Journal, 2015, 24 : 459 - 469
  • [25] Development of an optimized thermal cure cycle for a complex-shape composite part using a coupled finite element/genetic algorithm technique
    Vafayan, Mehdy
    Ghoreishy, Mir Hamid Reza
    Abedini, Hossein
    Beheshty, Mohammad Hossein
    IRANIAN POLYMER JOURNAL, 2015, 24 (06) : 459 - 469
  • [26] Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal
    Fu, Zemin
    Mo, Jianhua
    Chen, Lin
    Chen, Wei
    MATERIALS & DESIGN, 2010, 31 (01): : 267 - 277
  • [27] Genetic Algorithm Development for Prediction of Modified Langmuir Isotherm Parameters of Asphaltene Adsorption onto Metal Surfaces: Using Novel Quartz Crystal Nanobalance
    Mohammadi, Majid
    Sedighi, Mehdi
    Kiasari, Hani Hashemi
    Hosseini, Seyed MortezaTohidi
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2015, 36 (03) : 384 - 392