On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes

被引:12
作者
Chepoi, Victor [1 ]
Hagen, Mark F. [2 ]
机构
[1] Univ Aix Marseille, Lab Informat Fondamentale, Fac Sci Luminy, F-13288 Marseille 9, France
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
CAT(0) cube complex; Median graph; Isometric embedding; Contact graph; Hyperplane; Colouring; MEDIAN GRAPHS; CHROMATIC NUMBER; EVENT STRUCTURES; LABELING PROBLEM; GEOMETRY; FINITE;
D O I
10.1016/j.jctb.2013.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Delta can be coloured with at most epsilon(Delta) = M Delta(26) colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most epsilon(Delta) trees, and that the event structure whose domain is X admits a nice labelling with epsilon(Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:428 / 467
页数:40
相关论文
共 65 条
  • [1] Abrams A., 2002, Intl. J. Robotics Research, V23, P140
  • [2] Agol I., PREPRINT
  • [3] [Anonymous], 1961, Proc. Am. Math. Soc.
  • [4] [Anonymous], 1988, Modeli i Metody Optim
  • [5] [Anonymous], 1997, ANN COMB, DOI DOI 10.1007/BF02558484
  • [6] [Anonymous], 1951, Nederl. Akad. Wetensch. Proc. Ser. A
  • [7] Geodesics in CAT(0) cubical complexes
    Ardila, Federico
    Owen, Megan
    Sullivant, Seth
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 142 - 163
  • [8] Asplund E., 1960, Mathematica Scandinavica, V8, P181
  • [9] FINITE LABELING PROBLEM IN EVENT STRUCTURES
    ASSOUS, MR
    BOUCHITTE, V
    CHARRETTON, C
    ROZOY, B
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 123 (01) : 9 - 19
  • [10] Ballmann W., 1999, Enseign. Math. (2), V45, P51