Coherent state transfer between itinerant microwave fields and a mechanical oscillator

被引:364
作者
Palomaki, T. A. [1 ,2 ,3 ]
Harlow, J. W. [1 ,2 ,3 ]
Teufel, J. D. [4 ]
Simmonds, R. W. [4 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO USA
[4] NIST, Boulder, CO 80305 USA
关键词
QUANTUM GROUND-STATE; NANOMECHANICAL MOTION; RESONATOR; CIRCUIT;
D O I
10.1038/nature11915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Macroscopic mechanical oscillators have been coaxed into a regime of quantum behaviour by direct refrigeration(1) or a combination of refrigeration and laser-like cooling(2,3). This result supports the idea that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits(4-7), either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems(8-14). As yet, the transfer of an itinerant state or a propagating mode of a microwave field to and from a storage medium has not been demonstrated, owing to the inability to turn on and off the interaction between the microwave field and the medium sufficiently quickly. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in and retrieved from a mechanical oscillator with amplitudes at the single-quantum level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store quantum information and enable its transfer between otherwise incompatible systems.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 30 条
[21]   Proposal for an optomechanical traveling wave phonon-photon translator [J].
Safavi-Naeini, Amir H. ;
Painter, Oskar .
NEW JOURNAL OF PHYSICS, 2011, 13
[22]   Accessing nanomechanical resonators via a fast microwave circuit [J].
Sillanpaa, Mika A. ;
Sarkar, Jayanta ;
Sulkko, Jaakko ;
Muhonen, Juha ;
Hakonen, Pertti J. .
APPLIED PHYSICS LETTERS, 2009, 95 (01)
[23]   Sideband cooling of micromechanical motion to the quantum ground state [J].
Teufel, J. D. ;
Donner, T. ;
Li, Dale ;
Harlow, J. W. ;
Allman, M. S. ;
Cicak, K. ;
Sirois, A. J. ;
Whittaker, J. D. ;
Lehnert, K. W. ;
Simmonds, R. W. .
NATURE, 2011, 475 (7356) :359-363
[24]   Circuit cavity electromechanics in the strong-coupling regime [J].
Teufel, J. D. ;
Li, Dale ;
Allman, M. S. ;
Cicak, K. ;
Sirois, A. J. ;
Whittaker, J. D. ;
Simmonds, R. W. .
NATURE, 2011, 471 (7337) :204-208
[25]   Dynamical Backaction of Microwave Fields on a Nanomechanical Oscillator [J].
Teufel, J. D. ;
Harlow, J. W. ;
Regal, C. A. ;
Lehnert, K. W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[26]   Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems [J].
Tian, Lin .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[27]   Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode [J].
Verhagen, E. ;
Deleglise, S. ;
Weis, S. ;
Schliesser, A. ;
Kippenberg, T. J. .
NATURE, 2012, 482 (7383) :63-67
[28]   Using Interference for High Fidelity Quantum State Transfer in Optomechanics [J].
Wang, Ying-Dan ;
Clerk, Aashish A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[29]   Theory of ground state cooling of a mechanical oscillator using dynamical backaction [J].
Wilson-Rae, I. ;
Nooshi, N. ;
Zwerger, W. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (09)
[30]   Quantum-state transfer from light to macroscopic oscillators [J].
Zhang, J ;
Peng, K ;
Braunstein, SL .
PHYSICAL REVIEW A, 2003, 68 (01) :5