Coherent state transfer between itinerant microwave fields and a mechanical oscillator

被引:364
作者
Palomaki, T. A. [1 ,2 ,3 ]
Harlow, J. W. [1 ,2 ,3 ]
Teufel, J. D. [4 ]
Simmonds, R. W. [4 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO USA
[4] NIST, Boulder, CO 80305 USA
关键词
QUANTUM GROUND-STATE; NANOMECHANICAL MOTION; RESONATOR; CIRCUIT;
D O I
10.1038/nature11915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Macroscopic mechanical oscillators have been coaxed into a regime of quantum behaviour by direct refrigeration(1) or a combination of refrigeration and laser-like cooling(2,3). This result supports the idea that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits(4-7), either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems(8-14). As yet, the transfer of an itinerant state or a propagating mode of a microwave field to and from a storage medium has not been demonstrated, owing to the inability to turn on and off the interaction between the microwave field and the medium sufficiently quickly. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in and retrieved from a mechanical oscillator with amplitudes at the single-quantum level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store quantum information and enable its transfer between otherwise incompatible systems.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 30 条
[1]   Reversible state transfer between light and a single trapped atom [J].
Boozer, A. D. ;
Boca, A. ;
Miller, R. ;
Northup, T. E. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[2]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[3]   Low-loss superconducting resonant circuits using vacuum-gap-based microwave components [J].
Cicak, Katarina ;
Li, Dale ;
Strong, Joshua A. ;
Allman, Michael S. ;
Altomare, Fabio ;
Sirois, Adam J. ;
Whittaker, Jed D. ;
Teufel, John D. ;
Simmonds, Raymond W. .
APPLIED PHYSICS LETTERS, 2010, 96 (09)
[4]   Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].
Cirac, JI ;
Zoller, P ;
Kimble, HJ ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3221-3224
[5]   Experimental State Tomography of Itinerant Single Microwave Photons (vol 106, 220503, 2011) [J].
Eichler, C. ;
Bozyigit, D. ;
Lang, C. ;
Steffen, L. ;
Fink, J. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[6]   Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator [J].
Fiore, Victor ;
Yang, Yong ;
Kuzyk, Mark C. ;
Barbour, Russell ;
Tian, Lin ;
Wang, Hailin .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[7]   Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators [J].
Gao, Jiansong ;
Daal, Miguel ;
Vayonakis, Anastasios ;
Kumar, Shwetank ;
Zmuidzinas, Jonas ;
Sadoulet, Bernard ;
Mazin, Benjamin A. ;
Day, Peter K. ;
Leduc, Henry G. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[8]   Observation of strong coupling between a micromechanical resonator and an optical cavity field [J].
Groeblacher, Simon ;
Hammerer, Klemens ;
Vanner, Michael R. ;
Aspelmeyer, Markus .
NATURE, 2009, 460 (7256) :724-727
[9]   Back-action-evading measurements of nanomechanical motion [J].
Hertzberg, J. B. ;
Rocheleau, T. ;
Ndukum, T. ;
Savva, M. ;
Clerk, A. A. ;
Schwab, K. C. .
NATURE PHYSICS, 2010, 6 (03) :213-217
[10]   Quantum entanglement and teleportation in pulsed cavity optomechanics [J].
Hofer, Sebastian G. ;
Wieczorek, Witlef ;
Aspelmeyer, Markus ;
Hammerer, Klemens .
PHYSICAL REVIEW A, 2011, 84 (05)