Lengths of words accepted by nondeterministic finite automata

被引:7
|
作者
Potechin, Aaron [1 ]
Shallit, Jeffrey [2 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Finite automaton; Formal languages; Theory of computation; Computational complexity; Strong exponential-time hypothesis;
D O I
10.1016/j.ipl.2020.105993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider two natural problems about nondeterministic finite automata (NFA). First, given an NFA M of n states, and a length l?, does M accept a word of length We show that the classic problem of triangle-free graph recognition reduces to this problem, and give an O (n(omega)(log n)(1+epsilon )log l)-time algorithm to solve it, where omega is the optimal exponent for matrix multiplication. Second, provided L(M) is finite, we consider the problem of listing the lengths of all words accepted by M. Although this problem seems like it might be significantly harder, we show that in the unary case this problem can be solved in O (n(omega)(log n)(2+epsilon )log l) time. Finally, we give a connection between NFA acceptance and the strong exponential-time hypothesis. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata
    Sawa, Zdenek
    FUNDAMENTA INFORMATICAE, 2013, 123 (01) : 97 - 106
  • [2] VC-dimensions of nondeterministic finite automata for words of equal length
    Kjos-Hanssen, Bjorn
    Felix, Clyde James
    Kim, Sun Young
    Lamb, Ethan
    Takahashi, Davin
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022, 90 (01) : 93 - 105
  • [3] VC-dimensions of nondeterministic finite automata for words of equal length
    Bjørn Kjos-Hanssen
    Clyde James Felix
    Sun Young Kim
    Ethan Lamb
    Davin Takahashi
    Annals of Mathematics and Artificial Intelligence, 2022, 90 : 93 - 105
  • [4] Reversible Nondeterministic Finite Automata
    Holzer, Markus
    Kutrib, Martin
    REVERSIBLE COMPUTATION, RC 2017, 2017, 10301 : 35 - 51
  • [5] Extended Nondeterministic Finite Automata
    Melnikov, Boris
    FUNDAMENTA INFORMATICAE, 2010, 104 (03) : 255 - 265
  • [6] On an expansion of nondeterministic finite automata
    Melnikov B.
    Journal of Applied Mathematics and Computing, 2007, 24 (1-2) : 155 - 165
  • [7] Finding shortest D1-synchronizing words for nondeterministic finite automata
    Zhu K.
    Wu G.
    Yuan M.
    Yang L.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (02): : 68 - 73
  • [8] Shortest directing words of nondeterministic directable automata
    Ito, Masami
    Shikishima-Tsuji, Kayoko
    DISCRETE MATHEMATICS, 2008, 308 (21) : 4900 - 4905
  • [9] Complementation constructions for nondeterministic automata on infinite words
    Kupferman, O
    Vardi, MY
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PROCEEDINGS, 2005, 3440 : 206 - 221
  • [10] ON STATE MINIMIZATION OF NONDETERMINISTIC FINITE AUTOMATA
    KAMEDA, T
    WEINER, P
    IEEE TRANSACTIONS ON COMPUTERS, 1970, C 19 (07) : 617 - &