Surface singularities on cyclic coverings and an inequality for the signature

被引:5
作者
Ashikaga, T [1 ]
机构
[1] Tohoku Gakuin Univ, Fac Engn, Tagajo, Miyagi 985, Japan
关键词
signature; Milnor fiber; cyclic covering; plane curve singularity; geometric genus; Milnor number;
D O I
10.2969/jmsj/05120485
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the signature of the Milnor fiber of a surface singularity of cyclic type, we prove a certain inequality, which naturally induce an answer of Durfee's conjecture in this case. For the proof, we use a certain perturbation method on the way of Hirzebruch's resolution process.
引用
收藏
页码:485 / 521
页数:37
相关论文
共 27 条
[1]   MONODROMY GROUP OF UNFOLDING OF ISOLATED SINGULARITIES OF PLANE CURVES I [J].
ACAMPO, N .
MATHEMATISCHE ANNALEN, 1975, 213 (01) :1-32
[2]  
Artin Michael, 1969, Inst. Hautes Etudes Sci. Publ. M ath, V36, P23
[3]  
ASHIKAGA T, 1992, TOHOKU MATH J, V44, P177, DOI 10.2748/tmj/1178227335
[4]   RIEMANN-ROCH EQUATION FOR SINGULAR COMPLEX SURFACES [J].
BRENTON, L .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :299-312
[5]  
BRIESKORN E, 1966, INVENT MATH, V2, P1
[6]   SIGNATURE OF SMOOTHINGS OF COMPLEX SURFACE SINGULARITIES [J].
DURFEE, AH .
MATHEMATISCHE ANNALEN, 1978, 232 (01) :85-98
[7]   MILNOR FIBER OF A CONE ON A SINGLE SMOOTH CURVE [J].
ESNAULT, H .
INVENTIONES MATHEMATICAE, 1982, 68 (03) :477-496
[8]   CASSON INVARIANT OF SEIFERT HOMOLOGY 3-SPHERES [J].
FUKUHARA, S ;
MATSUMOTO, Y ;
SAKAMOTO, K .
MATHEMATISCHE ANNALEN, 1990, 287 (02) :275-285
[9]  
Gusein-Zade S.M., 1974, FUNKT ANAL PRIL, V8, P11
[10]  
HIRZEBRUCH F, 1973, ENSEIGN MATH, V19, P183