Interval multi-objective optimisation of structures using adaptive Kriging approximations

被引:71
|
作者
Li, Fangyi [1 ]
Luo, Zhen [2 ]
Rong, Jianhua [1 ]
Zhang, Nong [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Automot & Mech Engn, Changsha 410114, Hunan, Peoples R China
[2] Univ Technol Sydney, Sch Elect Mech & Mechatron Syst, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Multi-objective optimisation; Interval number programming; Uncertainty; Approximation model; ROBUST OPTIMIZATION; DESIGN; RELIABILITY; CRASHWORTHINESS; MODELS; UNCERTAINTY; PARAMETERS;
D O I
10.1016/j.compstruc.2012.12.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes an interval uncertain multi-objective optimisation (IUMOO) method for structures with uncertain-but-bounded parameters. An adaptive Kriging model is established to improve the computational efficiency and numerical accuracy in the approximation of design functions. Latin Hypercube Design (LHD) is applied to achieve a set of sampling points both in the design and uncertain spaces for calibrating the Kriging surrogate model. The interval number programming method is used to transform the uncertain optimisation into a corresponding deterministic multi-objective optimisation. Typical numerical examples are used to demonstrate the effectiveness of the proposed methodology. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 50 条
  • [21] Integrated multi-objective robust optimization and sensitivity analysis with irreducible and reducible interval uncertainty
    Li, M.
    Azarm, S.
    Williams, N.
    Al Hashimi, S.
    Almansoori, A.
    Al Qasas, N.
    ENGINEERING OPTIMIZATION, 2009, 41 (10) : 889 - 908
  • [22] Multi-objective optimisation of vehicle bodies made of FRP sandwich structures
    Velea, Marian N.
    Wennhage, Per
    Zenkert, Dan
    COMPOSITE STRUCTURES, 2014, 111 : 75 - 84
  • [23] Methods of Multi-objective Optimisation Design of Thin-walled Structures
    Liu, Xiaoyang
    Qu, Shuang
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ADVANCED DESIGN AND MANUFACTURING ENGINEERING, 2015, 39 : 1885 - 1890
  • [24] Evolutionary multi-objective design optimisation with real life uncertainty and constraints
    Roy, R.
    Azene, Y. T.
    Farrugia, D.
    Onisa, C.
    Mehnen, J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2009, 58 (01) : 169 - 172
  • [25] Review of cost objective functions in multi-objective optimisation analysis of buildings
    Auza, Anna
    Asadi, Ehsan
    Chenari, Behrang
    da Silva, Manuel Gameiro
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [26] Multi-objective design optimization using hybrid search algorithms with interval uncertainty for thin-walled structures
    Xu, Xiang
    Xu, Gaoxiang
    Chen, Jiawei
    Liu, Zhe
    Chen, Xinbo
    Zhang, Yong
    Fang, Jianguang
    Gao, Yunkai
    THIN-WALLED STRUCTURES, 2022, 175
  • [27] An adaptive multi-objective particle swarm optimisation algorithm based on fitness distance to streamline repository
    Wang, Suyu
    Ma, Dengcheng
    Ren, Ze
    Qu, Yuanyuan
    Wu, Miao
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (04) : 209 - 219
  • [28] Sensitivity of algorithm parameters and objective function scaling in multi-objective optimisation of water distribution systems
    Mala-Jetmarova, Helena
    Barton, Andrew
    Bagirov, Adil
    JOURNAL OF HYDROINFORMATICS, 2015, 17 (06) : 891 - 916
  • [29] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [30] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274