The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector

被引:151
作者
Gundacker, Stefan [1 ,2 ]
Heering, Arjan [3 ]
机构
[1] UniMIB, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[2] CERN, Esplanade Particules 1, CH-1211 Meyrin, Switzerland
[3] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
SiPM; SPAD; Geiger mode avalanche; timing; TOF-PET; HEP; solid state photon detector; TIME-OF-FLIGHT; POSITRON-EMISSION-TOMOGRAPHY; TIMING RESOLUTION; AVALANCHE PHOTODIODES; DETECTION EFFICIENCY; PET/MRI INSERT; DIGITAL SIPM; HV CMOS; PET; SCINTILLATOR;
D O I
10.1088/1361-6560/ab7b2d
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The silicon photomultiplier (SiPM) is an established device of choice for a variety of applications, e.g. in time of flight positron emission tomography (TOF-PET), lifetime fluorescence spectroscopy, distance measurements in LIDAR applications, astrophysics, quantum-cryptography and related applications as well as in high energy physics (HEP). To fully utilize the exceptional performances of the SiPM, in particular its sensitivity down to single photon detection, the dynamic range and its intrinsically fast timing properties, a qualitative description and understanding of the main SiPM parameters and properties is necessary. These analyses consider the structure and the electrical model of a single photon avalanche diode (SPAD) and the integration in an array of SPADs, i.e. the SiPM. The discussion will include the front-end readout and the comparison between analog-SiPMs, where the array of SPADs is connected in parallel, and the digital SiPM, where each SPAD is read out and digitized by its own electronic channel. For several applications a further complete phenomenological view on SiPMs is necessary, defining several SiPM intrinsic parameters, i.e. gain fluctuation, afterpulsing, excess noise, dark count rate, prompt and delayed optical crosstalk, single photon time resolution (SPTR), photon detection effieciency (PDE) etc. These qualities of SiPMs influence directly and indirectly the time and energy resolution, for example in PET and HEP. This complete overview of all parameters allows one to draw solid conclusions on how best performances can be achieved for the various needs of the different applications.
引用
收藏
页数:30
相关论文
共 156 条
  • [1] Understanding and simulating SiPMs
    Acerbi, Fabio
    Gundacker, Stefan
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 926 : 16 - 35
  • [2] Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK
    Acerbi, Fabio
    Paternoster, Giovanni
    Gola, Alberto
    Zorzi, Nicola
    Piemonte, Claudio
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 912 : 309 - 314
  • [3] High-Density Silicon Photomultipliers: Performance and Linearity Evaluation for High Efficiency and Dynamic-Range Applications
    Acerbi, Fabio
    Paternoster, Giovanni
    Gola, Alberto
    Regazzoni, Veronica
    Zorzi, Nicola
    Piemonte, Claudio
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2018, 54 (02)
  • [4] High Efficiency, Ultra-High-Density Silicon Photomultipliers
    Acerbi, Fabio
    Gola, Alberto
    Regazzoni, Veronica
    Paternoster, Giovanni
    Borghi, Giacomo
    Zorzi, Nicola
    Piemonte, Claudio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (02)
  • [5] Cryogenic Characterization of FBK HD Near-UV Sensitive SiPMs
    Acerbi, Fabio
    Davini, Stefano
    Ferri, Alessandro
    Galbiati, Cristiano
    Giovanetti, Graham
    Gola, Alberto
    Korga, George
    Mandarano, Andrea
    Marcante, Marco
    Paternoster, Giovanni
    Piemonte, Claudio
    Razeto, Alessandro
    Regazzoni, Veronica
    Sablone, Davide
    Savarese, Claudio
    Zappaly, Gaetano
    Zorzi, Nicola
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (02) : 521 - 526
  • [6] NUV Silicon Photomultipliers With High Detection Efficiency and Reduced Delayed Correlated-Noise
    Acerbi, Fabio
    Ferri, Alessandro
    Zappala, Gaetano
    Paternoster, Giovanni
    Picciotto, Antonino
    Gola, Alberto
    Zorzi, Nicola
    Piemonte, Claudio
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 1318 - 1325
  • [7] Characterization of Single-Photon Time Resolution: From Single SPAD to Silicon Photomultiplier
    Acerbi, Fabio
    Ferri, Alessandro
    Gola, Alberto
    Cazzanelli, Massimo
    Pavesi, Lorenzo
    Zorzi, Nicola
    Piemonte, Claudio
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (05) : 2678 - 2686
  • [8] Lidar with SiPM: Some capabilities and limitations in real environment
    Agishev, Ravil
    Comeron, Adolfo
    Bach, Jordi
    Rodriguez, Alejandro
    Sicard, Michael
    Riu, Jordi
    Royo, Santiago
    [J]. OPTICS AND LASER TECHNOLOGY, 2013, 49 : 86 - 90
  • [9] Large size SiPM matrix for Imaging Atmospheric Cherenkov Telescopes applications
    Ambrosi, G.
    Corti, D.
    Ionica, M.
    Manea, C.
    Mariotti, M.
    Rando, R.
    Reichardt, I.
    Schultz, C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 : 125 - 127
  • [10] NINO: An ultrafast low-power front-end amplifier discriminator for the time-of-flight detector in the ALICE experiment
    Anghinolfi, F
    Jarron, P
    Krummenacher, F
    Usenko, E
    Williams, MCS
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (05) : 1974 - 1978