Unraveling a path for multi-cycle recycling of tailored fiber-reinforced vitrimer composites

被引:22
作者
Zhou, Zhengping [1 ]
Kim, Sungjin [1 ]
Bowland, Christopher C. [1 ]
Li, Bingrui [1 ,4 ]
Ghezawi, Natasha [1 ,4 ]
Lara-Curzio, Edgar [2 ]
Hassen, Ahmed [3 ]
Naskar, Amit K. [1 ]
Rahman, Md Anisur [1 ]
Saito, Tomonori [1 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Phys Sci Directorate, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Mfg Sci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Univ Tennessee Knoxville, Bredesen Ctr Interdisciplinary Res & Educ, Knoxville, TN 37966 USA
关键词
EPOXY VITRIMER; HIGH-PERFORMANCE; PLASTICS; TEMPERATURE; THERMOSETS; TRANSESTERIFICATION;
D O I
10.1016/j.xcrp.2022.101036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manufacturing transformation toward a net-zero carbon society demands polymeric composite materials to be reprocessable in circularity in an energy-efficient and stable manner. Recent advancements in vitrimers have bestowed crosslinked polymers like epoxies with reprocessability, opening a path for the circular manufacturing of thermosets. However, (re)processing of mechanically robust vitrimers such as epoxy vitrimers typically requires high temperatures and long processing times, which cause degradation and compromise efficient recyclability. Here, we report a simple design of dynamic polyurea/epoxy (DPE) vitrimers and their carbon-fiber-reinforced polymers (CFRPs) with exchangeable disulfide crosslinks, which overcome such intrinsic limitations. Compared with conventional epoxy vitrimers, the DPE vitrimer exhibits 6 times faster bond rearrangement and similar to 40 degrees C lower reprocessing temperature, which enables full recovery of the mechanical strength throughout 6 reprocessing cycles, while the conventional vitrimer lost similar to 63% of strength. Moreover, the CFRPs prepared with the DPE vitrimers exhibit facile multi-cycle processability and repairability by thermoformation.
引用
收藏
页数:16
相关论文
共 49 条
[1]  
Britt P.F. C., 2019, Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers
[2]   Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets [J].
Capelot, Mathieu ;
Montarnal, Damien ;
Tournilhac, Francois ;
Leibler, Ludwik .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) :7664-7667
[3]   Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers [J].
Chen, Mao ;
Zhou, Lin ;
Wu, Yeping ;
Zhao, Xiuli ;
Zhang, Yongjun .
ACS MACRO LETTERS, 2019, 8 (03) :255-260
[4]   Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds [J].
Christensen, Peter R. ;
Scheuermann, Angelique M. ;
Loeffler, Kathryn E. ;
Helms, Brett A. .
NATURE CHEMISTRY, 2019, 11 (05) :442-448
[5]   Chemical recycling to monomer for an ideal, circular polymer economy [J].
Coates, Geoffrey W. ;
Getzler, Yutan D. Y. L. .
NATURE REVIEWS MATERIALS, 2020, 5 (07) :501-516
[6]   Accelerated aging versus realistic aging in aerospace composite materials. I. The chemistry of thermal aging in a low-temperature-cure epoxy composite [J].
Dao, B. ;
Hodgkin, J. ;
Krstina, J. ;
Mardel, J. ;
Tian, W. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (05) :4291-4303
[7]   Vinylogous Urea Vitrimers and Their Application in Fiber Reinforced Composites [J].
Denissen, Wim ;
De Baere, Ives ;
Van Paepegem, Wim ;
Leibler, Ludwik ;
Winne, Johan ;
Du Prez, Filip E. .
MACROMOLECULES, 2018, 51 (05) :2054-2064
[8]  
Energy Transitions Committee, SECT FOC PLAST
[9]   Closed-loop recycling of polyethylene-like materials [J].
Haeussler, Manuel ;
Eck, Marcel ;
Rothauer, Dario ;
Mecking, Stefan .
NATURE, 2021, 590 (7846) :423-427
[10]   Scaling Up metal additive manufacturing process to fabricate molds for composite manufacturingstar; [J].
Hassen, Ahmed Arabi ;
Noakes, Mark ;
Nandwana, Peeyush ;
Kim, Seokpum ;
Kunc, Vlastimil ;
Vaidya, Uday ;
Love, Lonnie ;
Nycz, Andrzej .
ADDITIVE MANUFACTURING, 2020, 32