Analytical-numerical solution for turbulent jet diffusion flames of hydrogen

被引:0
|
作者
Pereira, F. N. [1 ]
Andreis, G. S. L. [1 ]
De Bortoli, A. L. [2 ]
Marcilio, N. R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Grad Program Chem Engn, BR-90040040 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Grad Program Appl Math, BR-91509900 Porto Alegre, RS, Brazil
关键词
Analytical-numerical solution; Diffusion flames; Hydrogen; Reduced kinetic mechanism; COMBUSTION; MECHANISM; IGNITION;
D O I
10.1007/s10910-012-0101-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen fuel seems to be a good candidate to replace the energy obtained from some fossil fuels. Therefore this work explains the process of obtaining a two-step reduced chemical kinetic mechanism for the hydrogen combustion. The development of a reduced mechanism consists in eliminating reactions that produce negligible influence on the combustion process. Moreover, for this mechanism, we obtain an analytical-numerical solution for a turbulent jet diffusion flame. To quantify the intermediate species, the mixture fraction is decomposed into three parts, each part directly related to the mass fraction of a species. The governing equations are discretized using the second order finite-difference approach and are integrated in time using the second order simplified three-step Runge-Kutta scheme. Obtained results compare favorably with data in the literature for a 50/50 % volume H (2)-N (2) jet diffusion flame. The main advantage of this strategy is the decrease of the work needed to solve the system of governing equations, by one order of magnitude for the hydrogen.
引用
收藏
页码:556 / 568
页数:13
相关论文
共 50 条
  • [1] Analytical-numerical solution for turbulent jet diffusion flames of hydrogen
    F. N. Pereira
    G. S. L. Andreis
    A. L. De Bortoli
    N. R. Marcílio
    Journal of Mathematical Chemistry, 2013, 51 : 556 - 568
  • [2] Development of an analytical-numerical solution for a steady and axisymmetric turbulent jet diffusion flame for the hydrogen based on a reduced kinetic mechanism
    Pereira, F. N.
    Andreis, G. S. L.
    De Bortoli, A. L.
    Marcilio, N. R.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (04) : 1315 - 1325
  • [3] Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen
    Krarraz, Naima
    Sabeur, Amina
    Safer, Khadidja
    Ouadha, Ahmed
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (01): : 96 - 96
  • [4] Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen
    Krarraz, Naima
    Sabeur, Amina
    Safer, Khadidja
    Ouadha, Ahmed
    Fluid Dynamics and Materials Processing, 2024, 20 (01): : 79 - 96
  • [5] Blowout of turbulent jet diffusion flames
    Stamps, Douglas
    Tieszen, Sheldon
    FUEL, 2014, 118 : 113 - 122
  • [6] Stability characteristics of non-premixed turbulent jet flames of hydrogen and syngas blends with coaxial air
    Hwang, Jeongjae
    Bouvet, Nicolas
    Sohn, Kitae
    Yoon, Youngbin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) : 5139 - 5149
  • [7] A NUMERICAL METHOD FOR THE SOLUTION OF CONFINED CO-FLOWING JET DIFFUSION FLAMES
    Lorenzzetti, G. S.
    De Bortoli, A. L.
    Marczak, L. D. F.
    LATIN AMERICAN APPLIED RESEARCH, 2012, 42 (01) : 27 - 32
  • [8] Numerical and experimental investigation of turbulent DME jet flames
    Bhagatwala, Ankit
    Luo, Zhaoyu
    Shen, Han
    Sutton, Jeffrey A.
    Lu, Tianfeng
    Chen, Jacqueline H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 1157 - 1166
  • [9] Direct numerical simulations of pure and partially cracked ammonia/air turbulent premixed jet flames
    Tian, Tingquan
    Wang, Haiou
    Luo, Kun
    Fan, Jianren
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [10] Structure and reaction zones of hydrogen - Carbon-monoxide laminar jet diffusion flames
    Khan, Naeem
    Raghavan, Vasudevan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (34) : 19832 - 19845