Semisupervised Dimension Reduction Based on Pairwise Constraint Propagation for Hyperspectral Images

被引:4
|
作者
Du, Weibao [1 ]
Lv, Meng [1 ]
Hou, Qiuling [1 ]
Jing, Ling [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
关键词
Dimension reduction (DR); hyperspectral images (HSIs); locality preserving projection; pairwise constraint propagation; semisupervised learning; DISCRIMINANT-ANALYSIS; FEATURE-EXTRACTION; RECOGNITION; CLASSIFICATION; EIGENFACES;
D O I
10.1109/LGRS.2016.2616365
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a semisupervised dimension reduction method based on pairwise constraint propagation (SSDR-PCP) for hyperspectral images (HSIs). SSDR-PCP first utilizes pairwise constraint propagation, which is based on the labeled samples and k-nearest neighbor graphs to obtain more similarity information. Then SSDR-PCP applies the obtained weak supervised information of the entire training data set to construct a new similarity matrix. At last, we embed the similarity matrix to local preserving projection to achieve dimension reduction by finding the optimal transformation matrix for HSIs. The experimental results demonstrate that SSDR-PCP achieves better performance than the previous methods on two HSIs.
引用
收藏
页码:1880 / 1884
页数:5
相关论文
共 50 条
  • [31] Imbalance-aware Pairwise Constraint Propagation
    Liu, Hui
    Jia, Yuheng
    Hou, Junhui
    Zhang, Qingfu
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1605 - 1613
  • [32] An Unsupervised Feature Extraction Using Endmember Extraction and Clustering Algorithms for Dimension Reduction of Hyperspectral Images
    Moghaddam, Sayyed Hamed Alizadeh
    Gazor, Saeed
    Karami, Fahime
    Amani, Meisam
    Jin, Shuanggen
    REMOTE SENSING, 2023, 15 (15)
  • [33] Semisupervised Band Clustering for Dimensionality Reduction of Hyperspectral Imagery
    Su, Hongjun
    Yang, He
    Du, Qian
    Sheng, Yehua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (06) : 1135 - 1139
  • [34] Patch Tensor-Based Multigraph Embedding Framework for Dimensionality Reduction of Hyperspectral Images
    Deng, Yang-Jun
    Li, Heng-Chao
    Song, Xin
    Sun, Yong-Jinn
    Zhang, Xiang-Rong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1630 - 1643
  • [35] Pairwise constraint propagation via low-rank matrix recovery
    Fu Z.
    Computational Visual Media, 2015, 1 (03) : 211 - 220
  • [36] Deep Clustering With Intraclass Distance Constraint for Hyperspectral Images
    Sun, Jinguang
    Wang, Wanli
    Wei, Xian
    Fang, Li
    Tang, Xiaoliang
    Xu, Yusheng
    Yu, Hui
    Yao, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4135 - 4149
  • [37] Pairwise constraint propagation via low-rank matrix recovery
    Zhenyong Fu
    ComputationalVisualMedia, 2015, 1 (03) : 211 - 220
  • [38] Structural Material Condition Assessment through Human-in-the-Loop Incremental Semisupervised Learning from Hyperspectral Images
    Chen, ZhiQiang
    Tang, Shimin
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2024, 38 (06)
  • [39] Semisupervised Pair-Wise Band Selection for Hyperspectral Images
    Bai, Jun
    Xiang, Shiming
    Shi, Limin
    Pan, Chunhong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2798 - 2813
  • [40] Semisupervised Classification for Hyperspectral Images Using Graph Attention Networks
    Sha, Anshu
    Wang, Bin
    Wu, Xiaofeng
    Zhang, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) : 157 - 161