Simulations of dissolved oxygen concentration in CMIP5 Earth system models

被引:11
作者
Bao Ying [1 ,2 ]
Li Yangchun [2 ,3 ]
机构
[1] State Ocean Adm, Inst Oceanog 1, Qingdao 266061, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
dissolved oxygen; CMIP5 Earth system model; meridional overturning circulation; particulate organic carbon flux; MINIMUM ZONES; PROJECTIONS; FORMULATION; PACIFIC;
D O I
10.1007/s13131-016-0959-x
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models (ESMs) from the historical emission driven experiment of CMIP5 (Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature (SST), with both globally-averaged error and root mean square error (RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones (OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation (MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW) and North Pacific Intermediate Water (NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively. Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.
引用
收藏
页码:28 / 37
页数:10
相关论文
共 33 条
[1]   An isopycnic ocean carbon cycle model [J].
Assmann, K. M. ;
Bentsen, M. ;
Segschneider, J. ;
Heinze, C. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (01) :143-167
[2]   Globalizing results from ocean in situ iron fertilization studies [J].
Aumont, O. ;
Bopp, L. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
[3]   Historical simulation and twenty-first century prediction of oceanic CO2 sink and pH change [J].
Bao Ying ;
Qiao Fangli ;
Song Zhenya .
ACTA OCEANOLOGICA SINICA, 2012, 31 (05) :87-97
[4]  
Bentsen M., 2012, Geosci. Model Dev. Discuss, V5, P2843, DOI [10.5194/GMDD-5-2843-2012, DOI 10.5194/GMDD-5-2843-2012]
[5]   Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends [J].
Cabre, A. ;
Marinov, I. ;
Bernardello, R. ;
Bianchi, D. .
BIOGEOSCIENCES, 2015, 12 (18) :5429-5454
[6]   Oxygen and indicators of stress for marine life in multi-model global warming projections [J].
Cocco, V. ;
Joos, F. ;
Steinacher, M. ;
Froelicher, T. L. ;
Bopp, L. ;
Dunne, J. ;
Gehlen, M. ;
Heinze, C. ;
Orr, J. ;
Oschlies, A. ;
Schneider, B. ;
Segschneider, J. ;
Tjiputra, J. .
BIOGEOSCIENCES, 2013, 10 (03) :1849-1868
[7]   Development and evaluation of an Earth-System model-HadGEM2 [J].
Collins, W. J. ;
Bellouin, N. ;
Doutriaux-Boucher, M. ;
Gedney, N. ;
Halloran, P. ;
Hinton, T. ;
Hughes, J. ;
Jones, C. D. ;
Joshi, M. ;
Liddicoat, S. ;
Martin, G. ;
O'Connor, F. ;
Rae, J. ;
Senior, C. ;
Sitch, S. ;
Totterdell, I. ;
Wiltshire, A. ;
Woodward, S. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) :1051-1075
[8]   Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 [J].
Dufresne, J-L. ;
Foujols, M-A. ;
Denvil, S. ;
Caubel, A. ;
Marti, O. ;
Aumont, O. ;
Balkanski, Y. ;
Bekki, S. ;
Bellenger, H. ;
Benshila, R. ;
Bony, S. ;
Bopp, L. ;
Braconnot, P. ;
Brockmann, P. ;
Cadule, P. ;
Cheruy, F. ;
Codron, F. ;
Cozic, A. ;
Cugnet, D. ;
de Noblet, N. ;
Duvel, J-P. ;
Ethe, C. ;
Fairhead, L. ;
Fichefet, T. ;
Flavoni, S. ;
Friedlingstein, P. ;
Grandpeix, J-Y. ;
Guez, L. ;
Guilyardi, E. ;
Hauglustaine, D. ;
Hourdin, F. ;
Idelkadi, A. ;
Ghattas, J. ;
Joussaume, S. ;
Kageyama, M. ;
Krinner, G. ;
Labetoulle, S. ;
Lahellec, A. ;
Lefebvre, M-P. ;
Lefevre, F. ;
Levy, C. ;
Li, Z. X. ;
Lloyd, J. ;
Lott, F. ;
Madec, G. ;
Mancip, M. ;
Marchand, M. ;
Masson, S. ;
Meurdesoif, Y. ;
Mignot, J. .
CLIMATE DYNAMICS, 2013, 40 (9-10) :2123-2165
[9]   GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics [J].
Dunne, John P. ;
John, Jasmin G. ;
Shevliakova, Elena ;
Stouffer, Ronald J. ;
Krasting, John P. ;
Malyshev, Sergey L. ;
Milly, P. C. D. ;
Sentman, Lori T. ;
Adcroft, Alistair J. ;
Cooke, William ;
Dunne, Krista A. ;
Griffies, Stephen M. ;
Hallberg, Robert W. ;
Harrison, Matthew J. ;
Levy, Hiram ;
Wittenberg, Andrew T. ;
Phillips, Peter J. ;
Zadeh, Niki .
JOURNAL OF CLIMATE, 2013, 26 (07) :2247-2267
[10]   GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics [J].
Dunne, John P. ;
John, Jasmin G. ;
Adcroft, Alistair J. ;
Griffies, Stephen M. ;
Hallberg, Robert W. ;
Shevliakova, Elena ;
Stouffer, Ronald J. ;
Cooke, William ;
Dunne, Krista A. ;
Harrison, Matthew J. ;
Krasting, John P. ;
Malyshev, Sergey L. ;
Milly, P. C. D. ;
Phillipps, Peter J. ;
Sentman, Lori T. ;
Samuels, Bonita L. ;
Spelman, Michael J. ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Zadeh, Niki .
JOURNAL OF CLIMATE, 2012, 25 (19) :6646-6665