LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds

被引:4
|
作者
Feng, Guoqiang [1 ]
Li, Weilong [1 ,3 ]
Zhao, Xiaolin [1 ]
Yang, Xuemeng [2 ]
Kong, Xin [2 ]
Huang, TianXin [2 ]
Cui, Jinhao [2 ]
机构
[1] Air Force Engn Univ, Equipment Management & Unmanned Aerial Vehicle En, Xian, Peoples R China
[2] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou, Peoples R China
[3] Air Force Engn Univ, Equipment Management & Unmanned Aerial Vehicle En, Xian 710051, Peoples R China
基金
中国博士后科学基金;
关键词
Aggregation methods - Autonomous driving - Autonomous robotics - Features fusions - Irregular arrangement - Large-scales - Local feature - Partition methods - Point-clouds - Semantic segmentation;
D O I
10.1049/csy2.12047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With a wide range of applications in autonomous driving and robotics, semantic segmentation for large-scale outdoor point clouds is a critical and challenging issue. Due to the large number and irregular arrangement of point clouds, it is difficult to balance the efficiency and effectiveness. In this paper, we propose LessNet, a lightweight and efficient voxel-based method for LiDAR-only semantic segmentation, taking advantage of cylindrical partition and intra-voxel feature fusion. Specifically, we use a cylindrical partition method to distribute the outdoor point clouds more evenly in voxels. To better encode the voxel features, we adopt an intra-voxel aggregation method without querying neighbours. The voxel features are further input into a lightweight and effective 3D U-net to aggregate local features and dilate the receptive field. Extensive experiments prove the satisfied semantic segmentation performance and the improvement of each component in our proposed framework. Our method is capable of processing more than one million point clouds at a time while retaining low latency and few parameters. Moreover, our method achieves comparable performance with state-of-the-art approaches and outperforms all projection-based methods on the SemanticKITTI benchmark.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [21] DCNet: Large-Scale Point Cloud Semantic Segmentation With Discriminative and Efficient Feature Aggregation
    Yin, Fukun
    Huang, Zilong
    Chen, Tao
    Luo, Guozhong
    Yu, Gang
    Fu, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4083 - 4095
  • [22] Context-Aware Network for Semantic Segmentation Toward Large-Scale Point Clouds in Urban Environments
    Liu, Chun
    Zeng, Doudou
    Akbar, Akram
    Wu, Hangbin
    Jia, Shoujun
    Xu, Zeran
    Yue, Han
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] TransWallNet: High-Performance Semantic Segmentation of Large-Scale and Multifeatured Point Clouds of Building Gables
    Ma, Junyan
    Jiang, Xin
    Zheng, Duan
    Liao, Xiaoping
    Lu, Juan
    Zhao, Yunlong
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2024, 150 (08)
  • [24] Dense Dual-Branch Cross Attention Network for Semantic Segmentation of Large-Scale Point Clouds
    Luo, Ziwei
    Zeng, Ziyin
    Tang, Wei
    Wan, Jie
    Xie, Zhong
    Xu, Yongyang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [25] Mining local geometric structure for large-scale 3D point clouds semantic segmentation
    Shao, Yuyuan
    Tong, Guofeng
    Peng, Hao
    NEUROCOMPUTING, 2022, 500 : 191 - 202
  • [26] SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
    Hu, Qingyong
    Yang, Bo
    Fang, Guangchi
    Guo, Yulan
    Leonardis, Ales
    Trigoni, Niki
    Markham, Andrew
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 600 - 619
  • [27] Exploring Dual Representations in Large-Scale Point Clouds: A Simple Weakly Supervised Semantic Segmentation Framework
    Liu, Jiaming
    Wu, Yue
    Gong, Maoguo
    Miao, Qiguang
    Ma, Wenping
    Xu, Cai
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2371 - 2380
  • [28] Enhanced Local Feature Learning With Simple Offset Attention for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Dong
    Wang, Yuebin
    Zhang, Liqiang
    Kang, Zhizhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [29] Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud
    Zhang, Yachao
    Li, Zonghao
    Xie, Yuan
    Qu, Yanyun
    Li, Cuihua
    Mei, Tao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3421 - 3429
  • [30] Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
    Landrieu, Loic
    Simonovsky, Martin
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4558 - 4567