Extension of primal-dual interior point methods to diff-convex problems on symmetric cones

被引:3
作者
Valkonen, Tuomo [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, SF-40351 Jyvaskyla, Finland
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Graz, Austria
关键词
symmetric cone; Jordan algebra; diff-convex; filter method; interior point; JORDAN ALGEBRAS; NONCONVEX OPTIMIZATION; ALGORITHMS; SUM;
D O I
10.1080/02331934.2011.585465
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the extension of primal dual interior point methods for linear programming on symmetric cones, to a wider class of problems that includes approximate necessary optimality conditions for functions expressible as the difference of two convex functions of a special form. Our analysis applies the Jordan-algebraic approach to symmetric cones. As the basic method is local, we apply the idea of the filter method for a globalization strategy.
引用
收藏
页码:345 / 377
页数:33
相关论文
共 33 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]   The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems [J].
An, LTH ;
Tao, PD .
ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) :23-46
[3]   An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms [J].
Andersen, KD ;
Christiansen, E ;
Conn, AR ;
Overton, ML .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :243-262
[4]  
[Anonymous], 1998, Variational Analysis
[5]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[6]   WEBER PROBLEM WITH ATTRACTION AND REPULSION [J].
CHEN, PC ;
HANSEN, P ;
JAUMARD, B ;
TUY, H .
JOURNAL OF REGIONAL SCIENCE, 1992, 32 (04) :467-486
[7]  
Clarke F. H., 1983, CANADIAN MATH SOC SE
[8]   A method of truncated codifferential with application to some problems of cluster analysis [J].
Demyanov, VF ;
Bagirov, AM ;
Rubinov, AM .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 23 (01) :63-80
[9]  
Faraut J., 1994, Oxford Mathematical Monographs
[10]   Jordan-algebraic aspects of nonconvex optimization over symmetric cones [J].
Faybusovich, L ;
Lu, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (01) :67-77