Fractal analysis for sets of non-differentiability of Minkowski's question mark function

被引:31
作者
Kesseboehmer, Marc [1 ]
Stratmann, Bernd O. [2 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat 3, D-28359 Bremen, Germany
[2] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
Minkowski question mark function; singular functions; Stern-Brocot spectrum; Farey map;
D O I
10.1016/j.jnt.2007.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study various fractal geometric aspects of the Minkowski question mark function Q. We show that the unit interval can be written as the union of the three sets Lambda(0) := {x: Q'(x) = 0}, Lambda infinity := {x: Q'(x) = infinity), and Lambda similar to := {x: Q'(x) does not exist and Q'(x) not equal infinity}. The main result is that the Hausdorff dimensions of these sets are related in the following way: dim(H)(v(F)) < dim(H)(Lambda(similar to)) = dim(H)(Lambda(infinity)) = dim(H)(l (h(top))) < dim(H)(Lambda(0)) = 1. Here, l(h(top)) refers to the level set of the Stern-Brocot multifractal decomposition at the topological entropy h(top) = log 2 of the Farey map F, and dim(H) (v(F)) denotes the Hausdorff dimension of the measure of maximal entropy of the dynamical system associated with F. The proofs rely partially on the multifractal formalism for Stern-Brocot intervals and give non-trivial applications of this formalism. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2663 / 2686
页数:24
相关论文
共 34 条
[11]  
Frisch U., 1985, TURBULENCE PREDICTAB, P84
[12]   A class of functions continuous but not absolutely continuous. [J].
Gilman, RE .
ANNALS OF MATHEMATICS, 1932, 33 :433-442
[13]  
GUTZWILLER M, 1990, INTERDISCIP APPL MAT
[14]   INVARIANT MULTIFRACTAL MEASURES IN CHAOTIC HAMILTONIAN-SYSTEMS, AND RELATED STRUCTURES [J].
GUTZWILLER, MC ;
MANDELBROT, BB .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :673-676
[15]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[16]  
HARDY GH, 1960, THEORY NUMBERS
[17]  
ITO SJ, 1989, OSAKA J MATH, V26, P557
[18]  
JARNIK V, 1928, PRACE MATH, V36
[19]   A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates [J].
Kesseboehmer, Marc ;
Stratmann, Bernd O. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 605 :133-163
[20]   A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups [J].
Kesseböhmer, M ;
Stratmann, BO .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :141-170