Further Results on Large Sets of Resolvable Idempotent Latin Squares

被引:6
作者
Zhou, Junling [1 ]
Chang, Yanxun [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
关键词
pairwise balanced design; large set; idempotent; Latin square; orthogonal; transversal;
D O I
10.1002/jcd.21305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An idempotent Latin square of order v is called resolvable and denoted by RILS(v) if the v(v-1) off-diagonal cells can be resolved into v-1 disjoint transversals. A large set of resolvable idempotent Latin squares of order v, briefly LRILS(v), is a collection of v-2 RILS(v)s pairwise agreeing on only the main diagonal. In this paper, it is established that there exists an LRILS(v) for any positive integer v=3, except for v=6, and except possibly for v?{14,20,22,26,28,34,35,38,40,42,46,50,55,62}.
引用
收藏
页码:399 / 407
页数:9
相关论文
共 8 条
[1]  
Abel R.J. R., 2007, HDB COMBINATORIAL DE, Vsecond, P247
[2]  
CHANG Y, 2000, J COMBIN MATH COMBIN, V32, P213
[3]  
Chang YX, 2000, J COMB DES, V8, P79, DOI 10.1002/(SICI)1520-6610(2000)8:2<79::AID-JCD1>3.3.CO
[4]  
2-8
[5]  
Greig M., 2007, CRC HDB COMBINATORIA, P236
[6]  
Kirkman T.P., 1850, CAMBRIDGE DUBLIN MAT, V5, P255
[7]   THE CONSTRUCTION OF LARGE SETS OF IDEMPOTENT QUASIGROUPS [J].
TEIRLINCK, L ;
LINDNER, CC .
EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (01) :83-89
[8]   Large sets of resolvable idempotent Latin squares [J].
Zhou, Junling ;
Chang, Yanxun ;
Tian, Zihong .
DISCRETE MATHEMATICS, 2011, 311 (01) :24-31