On the Multilinear Fractional Integral Operators with Correlation Kernels

被引:4
作者
Shi, Zuoshunhua [1 ,2 ]
Wu, Di [3 ]
Yan, Dunyan [3 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Sch Math Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Sch Math Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilinear fractional integral operator; Correlation kernels; Brascamp-Lieb inequality; Selberg integral; INEQUALITIES; CONSTANTS;
D O I
10.1007/s00041-017-9591-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of multilinear fractional integral operators associated with correlation kernels 1i<jk|xi-xj|-ij. We obtain the necessary and sufficient condition under which these operators are bounded from Lp1xxLpk into Lq. As a consequence, we also get the endpoint estimates from Lp1xxLpk to BMO.
引用
收藏
页码:538 / 587
页数:50
相关论文
共 26 条
[1]  
[Anonymous], THESIS
[2]   On a reverse form of the Brascamp-Lieb inequality [J].
Barthe, F .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :335-361
[3]  
Beckner W, 2013, ARXIV13116747
[4]  
Beckner W., 1995, ESSAYS FOURIER ANAL, V42, P36
[5]   Functionals for Multilinear Fractional Embedding [J].
Beckner, William .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) :1-28
[6]   The Brascamp-Lieb inequalities: Finiteness, structure and extremals [J].
Bennett, Jonathan ;
Carbery, Anthony ;
Christ, Michael ;
Tao, Terence .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (05) :1343-1415
[7]  
Bennett J, 2010, MATH RES LETT, V17, P647
[8]   BEST CONSTANTS IN YOUNGS INEQUALITY, ITS CONVERSE, AND ITS GENERALIZATION TO MORE THAN 3 FUNCTIONS [J].
BRASCAMP, HJ ;
LIEB, EH .
ADVANCES IN MATHEMATICS, 1976, 20 (02) :151-173
[10]  
Fan K, 1956, Ann. Math. Stud., V38, P99