Electro-derived Cu-Cu 2 O nanocluster from LDH for stable and selective C 2 hydrocarbons production from CO 2 electrochemical reduction

被引:55
作者
Altaf, Naveed [1 ]
Liang, Shuyu [1 ]
Huang, Liang [1 ]
Wang, Qiang [1 ]
机构
[1] Beijing Forestry Univ, Coll Environm Sci & Engn, Beijing 100083, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 48卷
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; COPPER-CATALYSTS; OXIDE COMPOSITE; ELECTROREDUCTION; HYDROXIDE; MORPHOLOGY; ETHYLENE; OXYGEN; METAL; FILMS;
D O I
10.1016/j.jechem.2019.12.013
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Recently, CO2 conversion by electrochemical tool into value-added chemicals has been considered as one of the most promising strategies to offer sustainable development in energy and environment. In this contribution, we investigated electro-derived composites from Cu-based layered double hydroxide (LDH) for CO2 electrochemical reduction. The Cu-Cu2O based nanocomposite (HPR-LDH) were derived by using electro-strategy from LDH having the stability up to 20 h and selectivity toward C2H4 with faraday efficiency up to 36% by significantly suppressing CH4 and H2 with respect to bulk Cu foil. A highly negative reduction potential derived catalyst (HPR-LDH) maintained long-term stability for the selective production of ethylene over methane, and a small amount of Cu2O was still observed on the catalyst surface after CO2 reduction reaction (CO2RR). Moreover, such unique strategy for electro-derived composite from LDH having small nanoparticles stacked each other grown on layered structure, would provide new insight to improve durability of O[sbnd]Cu combination catalysts for C[sbnd]C coupling products during electrochemical CO2 conversion by suppressing HER. The XRD, SEM, ESR, and XPS analyses confirmed that the long-term ethylene selectivity of HPR-LDH is due to the presence of subsurface oxygen. The designed composite catalyst significantly enhances the stability and selectivity, and also decreases the over potential for CO2 electro-reduction. We predict that the new designed LDH 2D-derived composites may attract new insight for transition metal and may open up a new direction for known structural properties of selective catalyst synthesis regarding effective CO2 reduction reaction. © 2019
引用
收藏
页码:169 / 180
页数:12
相关论文
共 62 条
[1]  
[Anonymous], 2018, ADV MAT
[2]   Electrochemical oxygen separation using hydroxide ion conductive layered double hydroxides [J].
Arishige, Yuji ;
Kubo, Daiju ;
Tadanaga, Kiyoharu ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
SOLID STATE IONICS, 2014, 262 :238-240
[3]   New Way for CO2 Reduction under Visible Light by a Combination of a Cu Electrode and Semiconductor Thin Film: Cu2O Conduction Type and Morphology Effect [J].
Ba, Xin ;
Yan, Li-Li ;
Huang, Sheng ;
Yu, Jiaguo ;
Xia, Xiang-Jun ;
Yu, Ying .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (42) :24467-24478
[4]   Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals [J].
Chen, Chung Shou ;
Handoko, Albertus D. ;
Wan, Jane Hui ;
Ma, Liang ;
Ren, Dan ;
Yeo, Boon Siang .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (01) :161-168
[5]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[6]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[7]   Bench-scale electrochemical system for generation of CO and syn-gas [J].
Dufek, Eric J. ;
Lister, Tedd E. ;
McIlwain, Michael E. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (06) :623-631
[8]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[9]   Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction [J].
Eilert, Andre ;
Cavalca, Filippo ;
Roberts, F. Sloan ;
Osterwalder, Juerg ;
Liu, Chang ;
Favaro, Marco ;
Crumlin, Ethan J. ;
Ogasawara, Hirohito ;
Friebel, Daniel ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :285-290
[10]   Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy [J].
Eilert, Andre ;
Roberts, F. Sloan ;
Friebel, Daniel ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1466-1470