Regional effects of vegetation restoration on water yield across the Loess Plateau, China

被引:183
|
作者
Feng, X. M. [1 ]
Sun, G. [2 ]
Fu, B. J. [1 ]
Su, C. H. [1 ]
Liu, Y. [3 ]
Lamparski, H. [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Urban & Reg Ecol, Res Ctr Ecoenvironm Sc, Beijing 100085, Peoples R China
[2] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, So Res Stn, Raleigh, NC 27606 USA
[3] Beijing Normal Univ, Coll Global Change & Earth Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN ANNUAL EVAPOTRANSPIRATION; AVERAGE ANNUAL STREAMFLOW; CLIMATE VARIABILITY; LAND-USE; AFFORESTATION; CATCHMENT; IMPACTS; SPLINES; RUNOFF; SCALE;
D O I
10.5194/hess-16-2617-2012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The general relationships between vegetation and water yield under different climatic regimes are well established at a small watershed scale in the past century. However, applications of these basic theories to evaluate the regional effects of land cover change on water resources remain challenging due to the complex interactions of vegetation and climatic variability and hydrologic processes at the large scale. The objective of this study was to explore ways to examine the spatial and temporal effects of a large ecological restoration project on water yield across the Loess Plateau region in northern China. We estimated annual water yield as the difference between precipitation input and modelled actual evapotranspiration (ET) output. We constructed a monthly ET model using published ET data derived from eddy flux measurements and watershed streamflow data. We validated the ET models at a watershed and regional levels. The model was then applied to examine regional water yield under land cover change and climatic variability during the implementation of the Grain-for-Green (GFG) project during 1999-2007. We found that water yield in 38% of the Loess Plateau area might have decreased (1-48 mm per year) as a result of land cover change alone. However, combined with climatic variability, 37% of the study area might have seen a decrease in water yield with a range of 1-54 mm per year, and 35% of the study area might have seen an increase with a range of 1-10 mm per year. Across the study region, climate variability masked or strengthened the water yield response to vegetation restoration. The absolute annual water yield change due to vegetation restoration varied with precipitation regimes with the highest in wet years, but the relative water yield changes were most pronounced in dry years. We concluded that the effects of land cover change associated with ecological restoration varied greatly over time and space and were strongly influenced by climatic variability in the arid region. The current regional vegetation restoration projects have variable effects on local water resources across the region. Land management planning must consider the influences of spatial climate variability and long-term climate change on water yield to be more effective for achieving environmental sustainability.
引用
收藏
页码:2617 / 2628
页数:12
相关论文
共 50 条
  • [21] The coupling interaction of soil organic carbon stock and water storage after vegetation restoration on the Loess Plateau, China
    Chen, Yuxuan
    Wei, Tianxing
    Ren, Kang
    Sha, Guoliang
    Guo, Xin
    Fu, Yanchao
    Yu, Huan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 306
  • [22] Influence of the vegetation restoration age on the soil detachment of root-soil composites on the Loess Plateau of China
    Ma, Jianye
    Zhang, Sijing
    She, Fangtao
    Zhao, Xiaofeng
    Ma, Bo
    Li, Haibo
    Wang, Chenguang
    Shang, Yongze
    Li, Zhanbin
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2024, 75 (06)
  • [23] Variations of deep soil moisture under different vegetation restoration types in a watershed of the Loess Plateau, China
    Meng, Tingting
    Sun, Pei
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [24] Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China
    Wang, Hao
    Zhang, Guang-hui
    Li, Ning-ning
    Zhang, Bao-jun
    Yang, Han-yue
    EARTH SURFACE PROCESSES AND LANDFORMS, 2019, 44 (03) : 796 - 807
  • [25] Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China
    Qu Lulu
    Huang Yunxin
    Yang Lingfan
    Li Yurui
    CHINESE GEOGRAPHICAL SCIENCE, 2020, 30 (01) : 89 - 100
  • [26] Effects of micro-topography and vegetation type on soil moisture in a large gully on the Loess Plateau of China
    Yu, Bowei
    Liu, Gaohuan
    Liu, Qingsheng
    Feng, Jiuliang
    Wang, Xiaoping
    Han, Guozhong
    Huang, Chong
    HYDROLOGY RESEARCH, 2018, 49 (04): : 1255 - 1270
  • [27] Effects of Vegetation Restoration on Soil Physical Properties in the Wind-Water Erosion Region of the Northern Loess Plateau of China
    Wang Li
    Mu Yan
    Zhang Qingfeng
    Jia Zhikaun
    CLEAN-SOIL AIR WATER, 2012, 40 (01) : 7 - 15
  • [28] Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China
    Qiu, Linjing
    Wu, Yiping
    Shi, Zhaoyang
    Yu, Mengzhen
    Zhao, Fubo
    Guan, Yinghui
    JOURNAL OF HYDROLOGY, 2021, 600
  • [29] Effects of vegetation type and topography on vegetation restoration after pipeline construction in the Northern Shaanxi Loess Plateau, China
    Zhao, Fuwang
    Wang, Ning
    Liu, Jun'e
    Zhou, Zhengchao
    ECOLOGICAL RESEARCH, 2023, 38 (01) : 177 - 187
  • [30] Soil moisture response to land use and topography across a semi-arid watershed: Implications for vegetation restoration on the Chinese Loess Plateau
    Xia Lu
    Bi Ru-tian
    Song Xiao-yu
    Hu Wei
    Lyu Chun-juan
    Xi Xu
    Li Huai-you
    JOURNAL OF MOUNTAIN SCIENCE, 2022, 19 (01) : 103 - 120