CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH STAGGERED DISCRETIZATIONS OF DIFFUSION COEFFICIENTS

被引:12
作者
Manzini, G. [1 ]
Lipnikov, K. [1 ]
Moulton, J. D. [1 ]
Shashkov, M. [2 ]
机构
[1] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Theoret Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, XCP Grp 4, Computat Phys Div, Los Alamos, NM 87545 USA
关键词
polygonal and polyhedral mesh; staggered diffusion coefficient; diffusion problems in mixed form; mimetic finite difference method; STOKES PROBLEM; APPROXIMATION; EQUATIONS;
D O I
10.1137/16M1108479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of the new family of mimetic finite difference schemes for linear diffusion problems recently proposed in [K. Lipnikov, G. Manzini, J. D. Moulton, and M. Shashkov, J. Comput. Phys, 305 (2016), pp. 111-126]. In contrast to the conventional approach, the diffusion coefficient enters both the primary mimetic operator, i.e., the discrete divergence, and the inner product in the space of gradients. The diffusion coefficient is therefore evaluated on different mesh locations, i.e., inside mesh cells and on mesh faces. Such a staggered discretization may provide the flexibility necessary for future development of efficient numerical schemes for nonlinear problems, especially for problems with degenerate coefficients. These new mimetic schemes preserve symmetry and positive-definiteness of the continuum problem, which allow us to use efficient algebraic solvers such as the preconditioned conjugate gradient method. We show that these schemes are inf-sup stable and establish a priori error estimates for the approximation of the scalar and vector solution fields. Numerical examples confirm the convergence analysis and the effectiveness of the method in providing accurate approximations.
引用
收藏
页码:2956 / 2981
页数:26
相关论文
共 51 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
[Anonymous], FINITE VOLUMES COMPL
[3]   Mimetic finite differences for nonlinear and control problems [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Bigoni, N. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1457-1493
[4]   Mimetic finite difference approximation of quasilinear elliptic problems [J].
Antonietti, Paola F. ;
Bigoni, Nadia ;
Verani, Marco .
CALCOLO, 2015, 52 (01) :45-67
[5]   A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1379-1400
[6]   Mimetic Discretizations of Elliptic Control Problems [J].
Antonietti, Paola F. ;
Bigoni, Nadia ;
Verani, Marco .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) :14-27
[7]   HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :654-675
[8]  
Arbogast T, 1998, SIAM J SCI COMPUT, V19, P404, DOI 10.1137/S1064827594264545
[9]   Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences [J].
Arbogast, T ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :828-852
[10]   Recent techniques for PDE discretizations on polyhedral meshes [J].
Bellomo, N. ;
Brezzi, F. ;
Manzini, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1453-1455