The three-way intersection problem for latin squares

被引:14
作者
Adams, P
Billington, EJ
Bryant, DE [1 ]
Mahmoodian, ES
机构
[1] Univ Queensland, Dept Math, Ctr Combinatories, Brisbane, Qld 4072, Australia
[2] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0012-365X(00)00454-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of integers k for which there exist three latin squares of order n having precisely k cells identical, with their remaining n(2) - k cells different in all three latin squares, denoted by I-3[n], is determined here for all orders n. In particular, it is shown that I-3[n] = {0,...,n(2) - 15} {n(2) - 12,n(2) - 9,n(2)} for n greater than or equal to 8. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 14 条
[1]   The μ-way intersection problem for m-cycle systems [J].
Adams, P ;
Billington, EJ ;
Bryant, DE ;
Khodkar, A .
DISCRETE MATHEMATICS, 2001, 231 (1-3) :27-56
[2]  
[Anonymous], 1996, CONGR NUMER CONF J N
[3]  
BILLINGTON EJ, IN PRESS GRAPHS COMB
[4]  
Billington EJ., 1993, C NUMERANTIUM, V92, P33
[5]  
DONOVAN D, 1997, J COMBIN MATH COMBIN, V23, P161
[6]  
Fu C. M., 1990, J COMBINATORICS INFO, V15, P89
[7]  
FU CM, 1989, MATEMATICHE CATANIA, V44, P21
[8]  
FU HL, 1980, THESIS AUBURN U
[9]   On the simultaneous edge-coloring conjecture [J].
Hajiaghaee, MT ;
Mahmoodian, ES ;
Mirrokni, VS ;
Saberi, A ;
Tusserkani, R .
DISCRETE MATHEMATICS, 2000, 216 (1-3) :267-272
[10]  
HEDAYAT AS, 1990, IMA V MATH, V21, P101