Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores

被引:31
|
作者
Hsieh, Tse-Yang [1 ]
Lin, Herng [1 ]
Hsieh, Tsang-Jen [1 ]
Huang, Juan-Chen [2 ]
机构
[1] Chung Shan Inst Sci & Technol, Tao Yuan 32599, Taiwan
[2] Natl Taiwan Ocean Univ, Dept Merchant Marine, Keelung 20224, Taiwan
关键词
MONTE-CARLO; PHONON-DISPERSION; TRANSPORT; SI;
D O I
10.1063/1.4730962
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a frequency-dependent phonon Boltzmann transport equation (BTE) solver to study phonon transport in arbitrary geometries. For composite and porous structures, most simulations adopted either gray-medium approximation or geometric simplification in phonon BTE model. To show the importance of considering the frequency-dependent phonon transport, transverse thermal transport in periodic porous silicon (PS) with aligned square-cylindrical pores is investigated by the present frequency-dependent phonon BTE solver and gray-medium phonon BTE solver. It is found that phonon size effect is underestimated by adopting the gray-medium approximation in sub-micron scale. To demonstrate geometry effect, the frequency-dependent phonon BTE solver is applied to study transverse thermal transport in the PS with square-cylindrical and circular-cylindrical pores for various characteristic sizes and porosities. The pore shape is found to make great difference to the thermal conductivity of the PS when the characteristic size is decreased or the porosity is increased. Our results indicate the importance of considering the frequency dependence of phonon transport as well as the exact geometry of material structure in the analysis of micro-and nanostructured materials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730962]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Thermal conductivity of silicon nanowire arrays with controlled roughness
    Feser, Joseph P.
    Sadhu, Jyothi S.
    Azeredo, Bruno P.
    Hsu, Keng H.
    Ma, Jun
    Kim, Junhwan
    Seong, Myunghoon
    Fang, Nicholas X.
    Li, Xiuling
    Ferreira, Placid M.
    Sinha, Sanjiv
    Cahill, David G.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
  • [42] Tunable thermal conductivity in silicon twinning superlattice nanowires
    Xiong, Shiyun
    Kosevich, Yuriy A.
    Saeaeskilahti, K.
    Ni, Yuxiang
    Volz, Sebastian
    PHYSICAL REVIEW B, 2014, 90 (19)
  • [43] Tuning the thermal conductivity of silicon nanowires by surface passivation
    Ruscher, Celine
    Cortes-Huerto, Robinson
    Hannebauer, Robert
    Mukherji, Debashish
    Nojeh, Alireza
    Phani, A. Srikantha
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (47)
  • [44] High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film
    Liu, Xiao
    Feldman, J. L.
    Cahill, D. G.
    Crandall, R. S.
    Bernstein, N.
    Photiadis, D. M.
    Mehl, M. J.
    Papaconstantopoulos, D. A.
    PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [45] Phonons and Phonon Thermal Conductivity in Silicon Nano layers
    Cocemasov, Alexandr I.
    Nika, Denis L.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (04) : 370 - 375
  • [46] Modeling the rarefied gas thermal conductivity in nanochannels
    Rudyak, Valery Ya.
    Lezhnev, Evgeny, V
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (02): : 186 - 194
  • [47] Thermal conductivity of silicon nitride membranes is not sensitive to stress
    Ftouni, Hossein
    Blanc, Christophe
    Tainoff, Dimitri
    Fefferman, Andrew D.
    Defoort, Martial
    Lulla, Kunal J.
    Richard, Jacques
    Collin, Eddy
    Bourgeois, Olivier
    PHYSICAL REVIEW B, 2015, 92 (12)
  • [48] Significant reduction of thermal conductivity in silicon nanowire arrays
    Zhang, Ting
    Wu, Shao-long
    Zheng, Rui-ting
    Cheng, Guo-an
    NANOTECHNOLOGY, 2013, 24 (50)
  • [49] Thermal conductivity accumulation in amorphous silica and amorphous silicon
    Larkin, Jason M.
    McGaughey, Alan J. H.
    PHYSICAL REVIEW B, 2014, 89 (14)
  • [50] Lattice thermal conductivity of silicon monolayer in biphenylene network
    Guo, Aiqing
    Cao, Fengli
    Ju, Weiwei
    Wang, Zhaowu
    Wang, Hui
    Li, Guo-Ling
    Liu, Gang
    AIP ADVANCES, 2023, 13 (06)