On m-complex symmetric weighted shift operators on Cn

被引:3
作者
Exner, G. R. [1 ]
Jin, J. Y. [2 ]
Jung, I. B. [2 ]
Lee, J. E. [3 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Complex symmetry; Conjugation; m-Complex symmetric operator; Weighted shift; Upper triangular matrix;
D O I
10.1016/j.laa.2020.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study m-complex symmetric weighted shift operators on C-n. Let T be the (backward) weighted shift on C-n for some n >= 2. We consider when T and T-a (the matrix of entries the moduli of those of T) are both m-complex symmetric with the (same) standard conjugation C, give as well some unitary operators useful in the study, and generalize to upper triangular matrices. Also, we show that if T is 2k-complex symmetric with the standard conjugation C for some k is an element of N with k < n, then T is (2k - 1)-complex symmetric with the conjugation C. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 153
页数:24
相关论文
共 50 条