On m-complex symmetric weighted shift operators on Cn

被引:3
作者
Exner, G. R. [1 ]
Jin, J. Y. [2 ]
Jung, I. B. [2 ]
Lee, J. E. [3 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Complex symmetry; Conjugation; m-Complex symmetric operator; Weighted shift; Upper triangular matrix;
D O I
10.1016/j.laa.2020.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study m-complex symmetric weighted shift operators on C-n. Let T be the (backward) weighted shift on C-n for some n >= 2. We consider when T and T-a (the matrix of entries the moduli of those of T) are both m-complex symmetric with the (same) standard conjugation C, give as well some unitary operators useful in the study, and generalize to upper triangular matrices. Also, we show that if T is 2k-complex symmetric with the standard conjugation C for some k is an element of N with k < n, then T is (2k - 1)-complex symmetric with the conjugation C. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 153
页数:24
相关论文
共 50 条
  • [21] On complex symmetric weighted shifts
    Benhida, Chafiq
    Budzynski, Piotr
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 217 - 235
  • [22] On [m, C]-symmetric Operators
    Cho, Muneo
    Lee, Ji Eun
    Tanahashi, Kotaro
    Tomiyama, Jun
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (04): : 637 - 650
  • [23] COMPLEX SYMMETRIC WEIGHTED SHIFTS
    Zhu, Sen
    Li, Chun Guang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 511 - 530
  • [24] HYPERCYCLIC SHIFT FACTORIZATIONS FOR UNILATERAL WEIGHTED BACKWARD SHIFT OPERATORS
    Chan, Kit C.
    Sanders, Rebecca
    JOURNAL OF OPERATOR THEORY, 2018, 80 (02) : 349 - 374
  • [25] Complex symmetric monomial Toeplitz operators on the unit ball
    Hu, Xiao-He
    Dong, Xing-Tang
    Zhou, Ze-Hua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [26] Complex symmetry of weighted composition operators on the Fock space
    Pham Viet Hai
    Khoi, Le Hai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1757 - 1771
  • [27] Remarks on complex symmetric Toeplitz operators
    Kang, Dong-O
    Ko, Eungil
    Lee, Ji Eun
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (18) : 3466 - 3476
  • [28] Unbounded complex symmetric Toeplitz operators
    Kaikai Han
    Maofa Wang
    Qi Wu
    Acta Mathematica Scientia, 2022, 42 : 420 - 428
  • [29] Remarks on the structure of complex symmetric operators
    Gilbreath, T. M.
    Wogen, Warren R.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (04) : 585 - 590
  • [30] UNBOUNDED COMPLEX SYMMETRIC TOEPLITZ OPERATORS
    Han, Kaikai
    Wang, Maofa
    Wu, Qi
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (01) : 420 - 428