共 50 条
On m-complex symmetric weighted shift operators on Cn
被引:3
作者:
Exner, G. R.
[1
]
Jin, J. Y.
[2
]
Jung, I. B.
[2
]
Lee, J. E.
[3
]
机构:
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 143747, South Korea
基金:
新加坡国家研究基金会;
关键词:
Complex symmetry;
Conjugation;
m-Complex symmetric operator;
Weighted shift;
Upper triangular matrix;
D O I:
10.1016/j.laa.2020.05.030
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study m-complex symmetric weighted shift operators on C-n. Let T be the (backward) weighted shift on C-n for some n >= 2. We consider when T and T-a (the matrix of entries the moduli of those of T) are both m-complex symmetric with the (same) standard conjugation C, give as well some unitary operators useful in the study, and generalize to upper triangular matrices. Also, we show that if T is 2k-complex symmetric with the standard conjugation C for some k is an element of N with k < n, then T is (2k - 1)-complex symmetric with the conjugation C. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 153
页数:24
相关论文
共 50 条