Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals

被引:28
作者
Yoshida, Hiroyuki [1 ]
Anucha, Konkanok [1 ]
Ogawa, Yasuhiro [1 ]
Kawata, Yuto [1 ]
Ozaki, Masanori [1 ]
Fukuda, Jun-ichi [2 ]
Kikuchi, Hirotsugu [3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Div Elect Elect & Informat Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Sustainable Chem, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[3] Kyushu Univ, Inst Mat Chem & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
关键词
ORDER-PARAMETER; MODEL;
D O I
10.1103/PhysRevE.94.042703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for BP II. Finite difference time domain and 4 x 4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110] and [100] directions, respectively.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2005, Computational Electrodynamics: the Finite-Difference Time-Domain Method
[2]   OPTICAL-PROPERTIES OF BLUE PHASE I - MEASUREMENTS OF THE ORDER PARAMETER [J].
BARBETMASSIN, R ;
PIERANSKI, P .
JOURNAL DE PHYSIQUE, 1985, 46 (C3) :61-79
[3]  
BARBETMASSIN R, 1984, J PHYS LETT-PARIS, V45, pL799, DOI 10.1051/jphyslet:019840045016079900
[4]  
BELYAKOV VA, 1985, ZH EKSP TEOR FIZ+, V89, P2035
[5]  
Berreman D. W., 1984, Liquid Crystals and Ordered Fluids. Proceedings of the American Chemical Society Symposium, P925
[7]   Matrix optics approach for liquid crystalline blue phases [J].
Bohley, C ;
Scharf, T .
OPTICS AND LASERS IN ENGINEERING, 2005, 43 (3-5) :329-339
[8]   Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II [J].
Cao, WY ;
Muñoz, A ;
Palffy-Muhoray, P ;
Taheri, B .
NATURE MATERIALS, 2002, 1 (02) :111-113
[9]   Description of optical properties of cholesteric photonic liquid crystals based on Maxwell equations and Kramers-Kronig relations [J].
Dolganov, P. V. ;
Ksyonz, G. S. ;
Dmitrienko, V. E. ;
Dolganov, V. K. .
PHYSICAL REVIEW E, 2013, 87 (03)
[10]   Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal [J].
Fukuda, Jun-ichi ;
Zumer, Slobodan .
NATURE COMMUNICATIONS, 2011, 2