Face hallucination through differential evolution parameter map learning with facial structure prior

被引:6
作者
Jiang, Junjun [1 ]
Ma, Jiayi [2 ]
Tang, Suhua [3 ]
Yu, Yi [4 ]
Aizawa, Kiyoharu [5 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Hubei, Peoples R China
[3] Univ Electrocommun, Grad Sch Informat & Engn, Dept Commun Engn & Informat, Tokyo 1828585, Japan
[4] Natl Inst Informat, Digital Content & Media Sci Res Div, Tokyo 1018430, Japan
[5] Univ Tokyo, Dept Informat & Commun Engn, Tokyo 1138654, Japan
基金
中国国家自然科学基金;
关键词
Face hallucination; Image super-resolution; Differential evolution; Facial structure; Neighbor embedding; IMAGE SUPERRESOLUTION; RECONSTRUCTION; ALGORITHM; MODELS;
D O I
10.1016/j.ins.2018.12.064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current learning based face hallucination approaches mainly focus on how to design a reasonable objective function, such as using different assumptions and incorporating different regularization terms, but do not give a reasonable way of selecting the model parameters. In this paper, we propose to exploit the facial structure prior to learn a parameter map based on differential evolution. Specifically, we claim that different position patches have different parameter settings because of their different statistical properties, and patches from the same position of different face images should have similar parameter settings. As a result, we first learn a parameter map for each training sample by leveraging an evolutionary algorithm based on differential evolution, and then fuse these learned parameter maps to an optimal parameter map for testing via mean-pooling strategy. Finally, we use the predicted parameter map to guide the co-occurrence relationship modeling in different regions of the input low-resolution (LR) face image. Experimental results demonstrate that, even without seeing the ground truth, results of proposed parameter map learning method are comparable to or better than those traditional unified parameter setting methods and some recently proposed deep learning methods. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 188
页数:15
相关论文
共 50 条
  • [1] [Anonymous], 2016, IEEE T NEURAL NETWOR, DOI DOI 10.1109/TCYB.2016.2638856
  • [2] Baker S., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P83, DOI 10.1109/AFGR.2000.840616
  • [3] Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding
    Bevilacqua, Marco
    Roumy, Aline
    Guillemot, Christine
    Morel, Marie-Line Alberi
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [4] Super-resolution of face images using kernel PCA-based prior
    Chakrabarti, Ayan
    Rajagopalan, A. N.
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (04) : 888 - 892
  • [5] Super-resolution through neighbor embedding
    Chang, H
    Yeung, DY
    Xiong, Y
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 275 - 282
  • [6] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [7] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [8] Stable recovery of sparse overcomplete representations in the presence of noise
    Donoho, DL
    Elad, M
    Temlyakov, VN
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) : 6 - 18
  • [9] Everingham M., 2006, HELLO MY NAME IS BUF
  • [10] Face Hallucination Using Linear Models of Coupled Sparse Support
    Farrugia, Reuben A.
    Guillemot, Christine
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4562 - 4577