Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals

被引:65
作者
Meetei, Sanoujam Dhiren [1 ]
Singh, Shougaijam Dorendrajit [1 ]
机构
[1] Manipur Univ, Dept Phys, Imphal 795003, Manipur, India
关键词
Crystal size; Crystal structure; Quenching; Photoluminescence; Nanocrystal; Quantum yield; UP-CONVERSION LUMINESCENCE; LIGHT EMISSION; ZIRCONIA; NANOPARTICLES;
D O I
10.1016/j.jlumin.2013.11.064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Properties of crystalline materials which depend on crystal size are of fundamental issues in the present advancement of nanocrystals. Understanding effects of crystal size on the materials' properties needs knowledge of the effects of associated parameters which give rise to the particular size. In this work, various crystal size of Eu3+ doped ZrO2 nanocrystals are synthesized by polyol, hydrothermal and simple-precipitation techniques. X-ray diffraction, photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals are studied exhaustively. Transmission electron microscopy, selected area electron diffraction, Fourier transform infrared spectroscopy and energy dispersive analysis of x-ray of the samples are also reported. Effects of crystal size and its associated parameters viz, crystal structure and luminescence quenching on emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals are studied at length. Effect of crystal structure dominates over quenching at large crystal size while, quenching dominates over the effect of crystal structure at smaller crystal size. Fundamental importance to study the effects of crystal size, structure and quenching on photoluminescence of a doped nanocrystal is elucidated. Quantum yield of 27.72% from ZrO2:Eu3+ nanocrystal (7 nm) is also reported. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 335
页数:8
相关论文
共 33 条
[1]   Phase relations and hardness trends of ZrO2 phases at high pressure [J].
Al-Khatatbeh, Yahya ;
Lee, Kanani K. M. ;
Kiefer, Boris .
PHYSICAL REVIEW B, 2010, 81 (21)
[2]  
Blasse G., 1994, LUMINESCENT MAT, P1, DOI [10.1007/978-3-642-79017-1_1, DOI 10.1007/978-3-642-79017-1_1, 10.1007/978-3-642-79017-11, DOI 10.1007/978-3-642-79017-11]
[3]   Synthesis and room-temperature ultraviolet photoluminesence properties of zirconia nanowires [J].
Cao, HQ ;
Qiu, XQ ;
Luo, B ;
Liang, Y ;
Zhang, YH ;
Tan, RQ ;
Zhao, MJ ;
Zhu, QM .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (03) :243-246
[4]  
Cullity B.D., 1956, ELEMENTS XRAY DIFFRA
[5]   Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection [J].
Das, Maumita ;
Sumana, Gajjala ;
Nagarajan, R. ;
Malhotra, B. D. .
APPLIED PHYSICS LETTERS, 2010, 96 (13)
[6]   Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor [J].
De la Rosa, E ;
Diaz-Torres, LA ;
Salas, P ;
Rodríguez, RA .
OPTICAL MATERIALS, 2005, 27 (07) :1320-1325
[7]   An improved experimental determination of external photoluminescence quantum efficiency [J].
deMello, JC ;
Wittmann, HF ;
Friend, RH .
ADVANCED MATERIALS, 1997, 9 (03) :230-&
[8]   OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (04) :1238-&
[9]  
Gillani R, 2010, INT J NANOMED, V5, P1
[10]   Effect of Dy3+ doping and calcination on the luminescence of ZrO2 nanoparticles [J].
Gu, F ;
Wang, SF ;
Lü, MK ;
Zhou, GJ ;
Liu, SW ;
Xu, D ;
Yuan, DR .
CHEMICAL PHYSICS LETTERS, 2003, 380 (1-2) :185-189