Quaternionic toric manifolds

被引:1
作者
Gentili, Graziano [1 ]
Gori, Anna [2 ]
Sarfatti, Giulia [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, I-50134 Florence, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
D O I
10.4310/JSG.2019.v17.n1.a7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we introduce and study a new notion of toric manifold in the quaternionic setting. We develop a construction with which, starting from appropriate m-dimensional Delzant poly-topes, we obtain manifolds of real dimension 4 m, acted on by m copies of the group Sp(1) of unit quaternions. These manifolds, are quaternionic regular in the sense of [11] and can be endowed with a 4-plectic structure and a generalized moment map. Convexity properties of the image of the moment map are studied. Quaternionic toric manifolds appear to be a large enough class of examples where one can test and study new results in quaternionic geometry.
引用
收藏
页码:267 / 300
页数:34
相关论文
共 18 条
[11]   Tetraplectic structures, tri-momentum maps, and quaterionic flag manifolds [J].
Foth, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 41 (04) :330-343
[12]  
Gelfand I.M., 1994, Mathematics: Theory and Applications
[13]   A direct approach to quaternionic manifolds [J].
Gentili, Graziano ;
Gori, Anna ;
Sarfatti, Giulia .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) :321-331
[14]   SOME EXAMPLES OF MINIMALLY DEGENERATE MORSE FUNCTIONS [J].
KIRWAN, F .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1987, 30 :289-293
[15]   TOPOLOGY OF QUATERNIONIC MANIFOLDS [J].
KRAINES, VY .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (03) :526-&
[16]  
Lerman E, 1995, MATH RES LETT, V2, P239
[17]   QUATERNIONIC TORIC VARIETIES [J].
SCOTT, R .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (02) :373-397
[18]  
Souriau J. M., 1978, GAZETTE MATH, V10, P90