Quaternionic toric manifolds

被引:1
作者
Gentili, Graziano [1 ]
Gori, Anna [2 ]
Sarfatti, Giulia [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, I-50134 Florence, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
D O I
10.4310/JSG.2019.v17.n1.a7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we introduce and study a new notion of toric manifold in the quaternionic setting. We develop a construction with which, starting from appropriate m-dimensional Delzant poly-topes, we obtain manifolds of real dimension 4 m, acted on by m copies of the group Sp(1) of unit quaternions. These manifolds, are quaternionic regular in the sense of [11] and can be endowed with a 4-plectic structure and a generalized moment map. Convexity properties of the image of the moment map are studied. Quaternionic toric manifolds appear to be a large enough class of examples where one can test and study new results in quaternionic geometry.
引用
收藏
页码:267 / 300
页数:34
相关论文
共 18 条
[1]   Slice-Quaternionic Hopf Surfaces [J].
Angella, Daniele ;
Bisi, Cinzia .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) :1837-1858
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]  
[Anonymous], 1978, Journal of Differential Geometry
[4]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[5]  
Bedulli L, 2008, J LIE THEORY, V18, P817
[6]   On quaternionic tori and their moduli space [J].
Bisi, Cinzia ;
Gentili, Graziano .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (02) :473-510
[7]  
Bredon G., 1972, INTRO COMPACT TRANSF
[8]  
Cox D., 2011, Graduate studies in mathematics
[9]  
da Silva A., 2001, Lecture Notes in Mathematics, V1764
[10]   PERIODIC HAMILTONIANS AND CONVEX IMAGES OF MOMENTUM MAPPING [J].
DELZANT, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03) :315-339