On the sum of all distances in bipartite graphs

被引:53
作者
Li, Shuchao [1 ]
Song, Yibing [1 ]
机构
[1] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Bipartite graph; Transmission; Matching number; Diameter; Vertex connectivity; Edge connectivity; WIENER INDEX; TREES;
D O I
10.1016/j.dam.2013.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission of a connected graph G is the sum of all distances between all pairs of vertices in G, it is also called the Wiener index of G. In this paper, sharp bounds on the transmission are determined for several classes of connected bipartite graphs. For example, in the class of all connected n-vertex bipartite graphs with a given matching number q, the minimum transmission is realized only by the graph Kq.n-q; in the class of all connected n-vertex bipartite graphs of diameter d, the extremal graphs with the minimal transmission are characterized. Moreover, all the extremal graphs having the minimal transmission in the class of all connected n-vertex bipartite graphs with a given vertex connectivity (resp. edge-connectivity) are also identified. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 22 条
  • [1] [Anonymous], 1990, Distance in Graphs
  • [2] Cohen N, 2010, MATCH-COMMUN MATH CO, V64, P683
  • [3] The edge-Wiener index of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3452 - 3457
  • [4] Wiener index of hexagonal systems
    Dobrynin, AA
    Gutman, I
    Klavzar, S
    Zigert, P
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) : 247 - 294
  • [5] Wiener index of trees: Theory and applications
    Dobrynin, AA
    Entringer, R
    Gutman, I
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) : 211 - 249
  • [6] Dou Y, 2010, MATCH-COMMUN MATH CO, V64, P757
  • [7] Distance distributions for graphs modeling computer networks
    Elenbogen, Bruce
    Fink, John Frederick
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2612 - 2624
  • [8] ENTRINGER RC, 1976, CZECH MATH J, V26, P283
  • [9] Gutman I, 1997, DISCRETE APPL MATH, V80, P1
  • [10] Gutman I, 2002, Z NATURFORSCH A, V57, P824