Irreducibility of the Gorenstein loci of Hilbert schemes via ray families

被引:28
作者
Casnati, Gianfranco [1 ]
Jelisiejew, Joachim [2 ]
Notari, Roberto [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Warsaw, Fac Math Informat & Mech, PL-02097 Warsaw, Poland
[3] Politecn Milan, Dipartimento Matemat Francesco Brioschi, I-20133 Milan, Italy
关键词
Hilbert scheme of points; smoothability; Gorenstein algebra; secant variety; SECANT VARIETIES; ALGEBRAS; VERONESE; RINGS;
D O I
10.2140/ant.2015.9.1525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the Gorenstein locus of the Hilbert scheme of d points on P-n i.e., the open subscheme parameterizing zero-dimensional Gorenstein subschemes of P-n of degree d. We give new sufficient criteria for smoothability and smoothness of points of the Gorenstein locus. In particular we prove that this locus is irreducible when d <= 13 and find its components when d = 14. The proof is relatively self-contained and it does not rely on a computer algebra system. As a by-product, we give equations of the fourth secant variety to the d-th Veronese reembedding of P-n for d >= 4.
引用
收藏
页码:1525 / 1570
页数:46
相关论文
共 43 条
[1]   Computing symmetric rank for symmetric tensors [J].
Bernardi, Alessandra ;
Gimigliano, Alessandro ;
Ida, Monica .
JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) :34-53
[2]  
Bertone C., 2012, PREPRINT
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
Bruns W., 1993, CAMBRIDGE STUDIES AD, V39
[5]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[6]   SECANT VARIETIES TO HIGH DEGREE VERONESE REEMBEDDINGS, CATALECTICANT MATRICES AND SMOOTHABLE GORENSTEIN SCHEMES [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw .
JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (01) :63-90
[7]  
Buczynski J., 2015, EXISTENCE K RE UNPUB
[8]  
Buczynski J., 2014, PREPRINT
[9]   Hilbert schemes of 8 points [J].
Cartwright, Dustin A. ;
Erman, Daniel ;
Velasco, Mauricio ;
Viray, Bianca .
ALGEBRA & NUMBER THEORY, 2009, 3 (07) :763-795
[10]  
Casnati G., 2014, J COMM ALGEBRA TO AP