Travelling wave solutions for a nonlinear variant of the PHI-four equation

被引:24
|
作者
Deng, Xijun [1 ]
Zhao, Ming [2 ]
Li, Xi [3 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Hubei, Peoples R China
[2] Yangtze Univ, Sch Comp Sci, Jinzhou 434023, Hubei, Peoples R China
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
Travelling wave solutions; Weierstrass elliptic function method; Variant of the PHI-four equation; HOMOTOPY PERTURBATION METHOD;
D O I
10.1016/j.mcm.2008.03.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, travelling wave solutions for a nonlinear variant of the PHI-four equation are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:617 / 622
页数:6
相关论文
共 50 条
  • [31] Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation
    Li, B
    Chen, Y
    Zhang, HQ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) : 653 - 666
  • [32] The properties of travelling wave solutions for Kdv-Burgers-Kuramoto equation
    Hu Yanxia
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 1979 - 1982
  • [33] Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation
    Li, CP
    Chen, GR
    Zhao, SC
    LATIN AMERICAN APPLIED RESEARCH, 2004, 34 (01) : 65 - 68
  • [34] On New Travelling Wave Solutions of the Generalized K-S Equation
    彭国俊
    李常品
    Journal of Shanghai University, 2002, (04) : 288 - 291
  • [35] Symbolic computation and abundant travelling wave solutions to KdV–mKdV equation
    SYED TAHIR RAZA RIZVI
    KASHIF ALI
    ALI SARDAR
    MUHAMMAD YOUNIS
    AHMET BEKIR
    Pramana, 2017, 88
  • [36] Travelling wave solutions for a singularly perturbed Burgers-KdV equation
    M. B. A. Mansour
    Pramana, 2009, 73 : 799 - 806
  • [37] Smooth travelling wave solutions in a generalized Degasperis-Procesi equation
    Zhu, Kun
    Shen, Jianhe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 98
  • [38] Travelling Wave Solutions of the K(m,n) Equation with Generalized Evolution
    Bruzon, M. S.
    Gandarias, M. L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 244 - 247
  • [39] TRAVELLING WAVE SOLUTIONS IN DELAYED CELLULAR NEURAL NETWORKS WITH NONLINEAR OUTPUT
    Liu, Xiuxiang
    Weng, Peixuan
    Xu, Zhiting
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [40] Travelling wave solutions for (N + 1)-dimensional nonlinear evolution equations
    Jonu Lee
    Rathinasamy Sakthivel
    Pramana, 2010, 75 : 565 - 578