STABLE SOLITARY WAVES WITH PRESCRIBED L2-MASS FOR THE CUBIC SCHRODINGER SYSTEM WITH TRAPPING POTENTIALS

被引:51
作者
Noris, Benedetta [1 ]
Tavares, Hugo [2 ]
Verzini, Gianmaria [3 ]
机构
[1] Univ Versailles St Quentin, Lab Math Versailles, F-78035 Versailles, France
[2] Univ Lisbon, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Dept Math, P-1049001 Lisbon, Portugal
[3] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Cooperative and competitive elliptic systems; Gross-Pitaevskii systems; constrained critical points; Ambrosetti-Prodi type problem; orbital stability; ORBITAL STABILITY; POSITIVE SOLUTIONS; STANDING WAVES; BOUND-STATES; EXISTENCE; EQUATIONS;
D O I
10.3934/dcds.2015.35.6085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the cubic Schrodinger system with trapping potentials in R-N, N <= 3, or in bounded domains, we investigate the existence and the orbital stability of standing waves having components with prescribed L-2-mass. We provide a variational characterization of such solutions, which gives information on the stability through a condition of Grillakis-Shatah-Strauss type. As an application, we show existence of conditionally orbitally stable solitary waves when: a) the masses are small, for almost every scattering lengths, and b) in the defocusing, weakly interacting case, for any masses.
引用
收藏
页码:6085 / 6112
页数:28
相关论文
共 36 条
[1]   Thomas-Fermi Approximation for Coexisting Two Component Bose-Einstein Condensates and Nonexistence of Vortices for Small Rotation [J].
Aftalion, Amandine ;
Noris, Benedetta ;
Sourdis, Christos .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) :509-579
[2]   On the structure of fractional degree vortices in a spinor Ginzburg-Landau model [J].
Alama, Stan ;
Bronsard, Lia ;
Mironescu, Petru .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (04) :1118-1136
[3]  
AMBROSETTI A., 1993, PRIMER NONLINEAR ANA, V34
[4]  
Ambrosetti A., 1972, Ann. Mat. Pura Appl, V93, P231, DOI [10.1007/BF02412022, DOI 10.1007/BF02412022]
[5]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[6]  
[Anonymous], 2003, COURANT LECT NOTES M
[7]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[8]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[9]   SEMILINEAR EQUATIONS IN RN WITHOUT CONDITION AT INFINITY [J].
BREZIS, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (03) :271-282
[10]   Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates [J].
Chang, SM ;
Lin, CS ;
Lin, TC ;
Lin, WW .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 196 (3-4) :341-361