Instance selection improves geometric mean accuracy: a study on imbalanced data classification

被引:47
作者
Kuncheva, Ludmila I. [1 ]
Arnaiz-Gonzalez, Alvar [2 ]
Diez-Pastor, Jose-Francisco [2 ]
Gunn, Iain A. D. [3 ]
机构
[1] Bangor Univ, Sch Comp Sci, Dean St, Bangor LL57 2NJ, Gwynedd, Wales
[2] Univ Burgos, Escuela Politecn Super, Ave Cantabria S-N, Burgos 09006, Spain
[3] Middlesex Univ, Dept Comp Sci, London NW4 4BT, England
关键词
Imbalanced data; Geometric mean (GM); Instance; prototype selection; Nearest neighbour; Ensemble methods; Theoretical perspective; SUPPORT VECTOR MACHINES; PREDICTION; ENSEMBLES;
D O I
10.1007/s13748-019-00172-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates. Here we prove that GM can be improved upon by instance selection, and give the theoretical conditions for such an improvement. We demonstrate that GM is non-monotonic with respect to the number of retained instances, which discourages systematic instance selection. We also show that balancing the distribution frequencies is inferior to a direct maximisation of GM. To verify our theoretical findings, we carried out an experimental study of 12 instance selection methods for imbalanced data, using 66 standard benchmark data sets. The results reveal possible room for new instance selection methods for imbalanced data.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 53 条
[1]   Applying support vector machines to imbalanced datasets [J].
Akbani, R ;
Kwek, S ;
Japkowicz, N .
MACHINE LEARNING: ECML 2004, PROCEEDINGS, 2004, 3201 :39-50
[2]  
Alcalá-Fdez J, 2011, J MULT-VALUED LOG S, V17, P255
[3]  
[Anonymous], SIGKDD Explor. Newsl, DOI DOI 10.1145/1007730.1007738
[4]   A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data [J].
Antonio Sanz, Jose ;
Bernardo, Dario ;
Herrera, Francisco ;
Bustince, Humberto ;
Hagras, Hani .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (04) :973-990
[5]   New applications of ensembles of classifiers [J].
Barandela, R ;
Sánchez, JS ;
Valdovinos, RM .
PATTERN ANALYSIS AND APPLICATIONS, 2003, 6 (03) :245-256
[6]   Strategies for learning in class imbalance problems [J].
Barandela, R ;
Sánchez, JS ;
García, V ;
Rangel, E .
PATTERN RECOGNITION, 2003, 36 (03) :849-851
[7]   FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning [J].
Batuwita, Rukshan ;
Palade, Vasile .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (03) :558-571
[8]   Combating imbalance in network intrusion datasets [J].
Cieslak, David A. ;
Chawla, Nitesh V. ;
Striegel, Aaron .
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, :732-+
[9]   Gene selection and disease prediction from gene expression data using a two-stage hetero-associative memory [J].
Cleofas-Sanchez, Laura ;
Salvador Sanchez, J. ;
Garcia, Vicente .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2019, 8 (01) :63-71
[10]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+