Non-linear dynamics versus chaotic motion for MDOF structural systems

被引:2
|
作者
Bontempi, F [1 ]
Casciati, F [1 ]
机构
[1] UNIV PAVIA,I-27100 PAVIA,ITALY
关键词
D O I
10.1016/S0960-0779(96)00061-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The evaluation of chaotic phenomena can be related either with the dynamical aspects of the motion (as in the assessment of the Lyapunov exponents and of the Kolmogorov entropy) or with its geometrical appearance in the phase space (as in the computation of the attractor dimension), Both these estimates are not satisfactorily reliable in a numerical context. Nevertheless, in engineering applications the goal is just to detect the regions of chaotic behaviour in the system parameter space. Even a rough delimitation of these regions can make it possible that the dynamical behaviour of a structure avoids showing unpredictable aspects or sensitivity to the initial conditions. This paper pursues the definition of the chaotic regions of an MDOF system by a parametric analysis in its embedding space. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1659 / 1682
页数:24
相关论文
共 50 条
  • [1] Non-linear dynamics versus chaotic motion for MDOF structural systems
    Bontempi, F.
    Casciati, F.
    Chaos, Solitons and Fractals, 1996, 7 (10):
  • [2] Long-term dynamics of non-linear MDOF engineering systems
    VanCampen, DH
    DeKraker, A
    Fey, RHB
    VandeVorst, ELB
    VanderSpek, JAW
    CHAOS SOLITONS & FRACTALS, 1997, 8 (04) : 455 - 477
  • [3] CHAOTIC MOTION IN NON-LINEAR FEEDBACK-SYSTEMS
    BAILLIEUL, J
    BROCKETT, RW
    WASHBURN, RB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (11): : 990 - 997
  • [4] NON-LINEAR DIFFUSION IN HAMILTONIAN-SYSTEMS EXHIBITING CHAOTIC MOTION
    ABARBANEL, HDI
    PHYSICA D, 1981, 4 (01): : 89 - 104
  • [5] Non-linear output frequency response functions of MDOF systems with multiple non-linear components
    Peng, Z. K.
    Lang, Z. Q.
    Billings, S. A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (07) : 941 - 958
  • [6] Non-linear and chaotic dynamics in igneous petrology
    Poli, G
    Perugini, D
    LITHOS, 2002, 65 (3-4) : VII - VIII
  • [7] Non-linear dynamics and chaotic behaviour (II)
    Bourceanu, G
    Bîrzu, A
    Bourceanu, M
    Vatamanu, J
    REVISTA DE CHIMIE, 1998, 49 (11): : 781 - 795
  • [8] DYNAMICS OF LINEAR AND NON-LINEAR SYSTEMS
    HEAD, JW
    ELECTRONIC ENGINEERING, 1966, 38 (457): : 188 - &
  • [9] DYNAMICS OF LINEAR AND NON-LINEAR SYSTEMS
    GILLIES, AW
    NATURE, 1966, 210 (5031) : 54 - &
  • [10] FORMULATION OF STOCHASTIC LINEARIZATION FOR SYMMETRIC OR ASYMMETRIC MDOF NON-LINEAR SYSTEMS
    SPANOS, PTD
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (01): : 209 - 211